en

Propulsion Systems for Monohull

The silence of an Oceanvolt electric propulsion is a skipper's dream.  Whether quietly maneuvering through a harbor or motor-sailing on low-wind days to create your own apparent wind, our electric solutions will enhance and extend your sailing enjoyment. 

Oceanvolt offers Hybrid or Electric systems as a power & propulsion option in partnership with many leading monohull boat builders - adding new partners continuously. We also offer repowering solutions for converting away from legacy diesel engines – removing the diesel engine, fuel tanks and exhaust system - cleaning up greasy, smelly engine compartments and freeing up both weight and space below deck.

Oceanvolt systems are scaled and configured to achieve maximum efficiency - taking into consideration boat length, beam and displacement as well as system weight and placement within the boat.  Range, beyond battery capacity, is extended through hydro generation while sailing above 6kn.  This can be complemented with either a portable AC generator or a DC generator (in larger boats or for long distance cruising).

All Oceanvolt systems are engineered to operate at 48 volts for passenger safety and ease of repair. Oceanvolt systems are extremely low maintenance and do not require winterizing (no annual engine maintenance/storage costs).

system & price examples

Owner testimonials.

Electric Beneteau Oceanis 40.1 “Moritz”

Electric Beneteau Oceanis 40.1 “Moritz”

Maxi Dolphin MD55

Maxi Dolphin MD55

RM Yachts RM 1180

RM Yachts RM 1180

  • New Sailboats
  • Sailboats 21-30ft
  • Sailboats 31-35ft
  • Sailboats 36-40ft
  • Sailboats Over 40ft
  • Sailboats Under 21feet
  • used_sailboats
  • Apps and Computer Programs
  • Communications
  • Fishfinders
  • Handheld Electronics
  • Plotters MFDS Rradar
  • Wind, Speed & Depth Instruments
  • Anchoring Mooring
  • Running Rigging
  • Sails Canvas
  • Standing Rigging
  • Diesel Engines
  • Off Grid Energy
  • Cleaning Waxing
  • DIY Projects
  • Repair, Tools & Materials
  • Spare Parts
  • Tools & Gadgets
  • Cabin Comfort
  • Ventilation
  • Footwear Apparel
  • Foul Weather Gear
  • Mailport & PS Advisor
  • Inside Practical Sailor Blog
  • Activate My Web Access
  • Reset Password
  • Customer Service

diesel electric sailboat

  • Free Newsletter

diesel electric sailboat

Aluminum Cruisers: The Basics for First-Time Buyers

diesel electric sailboat

Marshall Sanderling 18: Used Boat Review

diesel electric sailboat

Affordable Cruising Sailboats, Continued

diesel electric sailboat

Maine Cat 41 Used Boat Review

Make sure someone is always keeping a lookout on the horizon while the tillerpilot is engaged. If there are a few crew onboard, it helps to rotate who is on watch so everyone else can relax.

Tillerpilot Tips and Safety Cautions

Irwin Vise-Grip Wire Stripper. (Photo/ Adam Morris)

Best Crimpers and Strippers for Fixing Marine Electrical Connectors

600-watt solar panel system on Summer Twins 28 sailing catamaran Caribbean Soul 2. (Photo/ Clifford Burgess)

Thinking Through a Solar Power Installation

diesel electric sailboat

How Does the Gulf Stream Influence our Weather?

diesel electric sailboat

Need a New Headsail Furler? Here’s What’s Involved

diesel electric sailboat

Master the Sailing Basics: Never Stop Learning the Little Things

1. Winch handle camera mount. It can’t fall of, is quick to place or remove in any conditions, and you can rotate it to change angles. (Photo/ Drew Frye)

How to Mount Your Camera on Deck: Record Your Adventures with…

The crew at Hop-O-Nose Marina in Catskill, NY helped us remove our mast. They also helped us build cradles on the deck so that we could carry our mast and rigging on deck as we traveled the Erie Canal. (Photo/ Alison Major)

Un-Stepping the Mast for America’s Great Loop

shorepower connection

Ensuring Safe Shorepower

diesel electric sailboat

Sinking? Check Your Stuffing Box

Instead of dreading a squall, think about it as a way to fill up your water tanks. PS tested ways to make sure the rainwater you catch is clean, tasty and safe to drink.

The Rain Catcher’s Guide

The engine mounts on my Perkins M20 diesel needed to be changed. Luckily, they are accessible so I was able to change them myself with a few basic tools and new parts. If your engine is less accessible, you'll need to ask a professional to change the mounts. (Photo/ Marc Robic)

How to Change Your Engine Mounts

With a few inexpensive materials and a bit of patience, you can redo the vinyl lettering on your boat yourself. (Photo/ Marc Robic)

Vinyl Boat Lettering DIY Application and Repair

Little things that are hardly necessary but nice to have start in the galley.

Those Extras you Don’t Need But Love to Have

diesel electric sailboat

Three-Model BBQ Test

diesel electric sailboat

Alcohol Stoves— Swan Song or Rebirth?

The edges of open shade can read as high as 25 percent of sunlight when surrounded by a white deck. (Photo/ Drew Frye)

UV Clothing: Is It Worth the Hype?

diesel electric sailboat

Preparing Yourself for Solo Sailing

diesel electric sailboat

How to Select Crew for a Passage or Delivery

diesel electric sailboat

Preparing A Boat to Sail Solo

diesel electric sailboat

Dear Readers

diesel electric sailboat

Chafe Protection for Dock Lines

Waxing and Polishing Your Boat

Waxing and Polishing Your Boat

diesel electric sailboat

Reducing Engine Room Noise

diesel electric sailboat

Tricks and Tips to Forming Do-it-yourself Rigging Terminals

  • Systems & Propulsion

Electric and Hybrid Propulsion for Sailboats

Practical sailor looks at the players in the developing field of electric auxiliary engines.

diesel electric sailboat

How soon will electric auxiliary propulsion be available to everyman? That depends on whom you ask. Opinions differ widely not just on what type of drive system might surge to the forefront, but even on whether the concept itself is viable. While a handful of companies forge ahead, notably Glacier Bay and Electric Marine Propulsion on this side of the Atlantic, some expected participants are waiting on the sidelines.

The Hybrid Lagoon 420

Photos courtesy of Manufacturers

One of the big issues that divides promoters and detractors alike is whether the appropriate way to go in a sailboat is with a pure diesel-electric drive train, with a hybrid electric drive with a diesel generator as back-up, or as a pure electric drive with regeneration capability. We’ll take a look at these and other options later in this article. For now, the short answer is that no single approach suits every sailor all the time.

Simply put, in the diesel-electric system, the electric motor runs only when the diesel-driven generator is running. Such arrangements have long been employed in railway locomotives, submarines, and commercial vessels of many types. In the hybrid system, a large bank of batteries provides the energy for the electric motor and the diesel generator recharges the batteries. On the face of it, the hybrid system offers a certain degree of redundancy in that, assuming the batteries are kept well charged, the boat has a measure of emergency power should the generator fail at an inopportune moment. The hybrid also is capable of recharging its batteries when sailing: Driven by the turning propeller, the motor becomes a generator.

Each of these approaches has its strengths and weaknesses, and while we’ll leave it to their developers to work out the technical issues, we would like to urge anyone contemplating installing an electric drive, or purchasing a boat that has one, to first look very closely at how they expect to use the boat. There’s more entrained in the choice than in picking a flavor at Baskin-Robbins. More on this later.

Among the electric drives currently available in one form or another, or as components, the big variable is operating voltage. Motors are available that run on 24, 36, 48, 72, and 144 volts, and, in the case of Glacier Bay’s diesel-electric system with Ossa Powerlite technology, 240-volt DC. Each supplier will discourse at length on the merits of their voltage choice, but an inconvenient fact haunts the entire field: High-voltage DC is deadly, potentially more so in some circumstances than AC.

While neither form of high-voltage is “safe,” we have a lot more experience with AC aboard recreational vessels than with high-voltage DC. An extensive body of knowledge exists on which to base AC installations so as to make them safe as well as reliable. High-voltage DC is used in a variety of marine and non-marine commercial applications, but these installations are well protected from access by untrained operators.

What voltage constitutes high voltage? That, again, depends on whom you talk to. The American Boat & Yacht Council (ABYC), which sets voluntary standards for the marine industry, defines it as 50 volts and above. Prompted by rapid adoption of high-voltage services in small commercial craft and bigger yachts, though not specifically in propulsion systems, the ABYC is in the process of drawing up guidelines for voltages higher than the 48 volts covered by existing standards.

An absence of standards might not deter individuals from installing an electric drive, but it might impede widespread adoption of the technology. If a surveyor can’t state in an insurance survey that a boat is built according to ABYC standards, that could affect its insurability.

Jim Nolan, who manages the underwriting department for BoatUS, said the company has no clear cut guidance regarding insuring boats with electric propulsion. Each boat is dealt with on a case-by-case basis. A new boat with a factory-installed system would be a good deal easier to underwrite than a one-off or do-it-yourself project, especially in the absence of a standard practice. Lagoon Catamarans’ 72-volt-DC hybrid system, for instance, has qualified for the European standard (CE) certification on the strength of following industrial standards that apply to such applications as fork-lift trucks. Anyone contemplating an electric drive would be well advised to discuss it ahead of time with an insurer and even get a surveyor involved from the outset.

Because of the safety issues surrounding the voltages involved in electric propulsion, Fischer Panda has decided to limit its DC product line to boats weighing 10 tons or less. A company representative we spoke to said that while Fischer Panda currently sells DC generators up to 48 volts in the USA for marine use, it “won’t touch” high-voltage DC because it’s lethal.

A proposed collaboration with Catalina Yachts to fit a diesel-electric system in a Catalina-Morgan 440 never came to fruition due to budget constraints, according to Fischer Panda. But in Europe, Fischer Panda teamed up with Whisperprop to equip a Bavaria 49. (Beyond the fact that one of its boats was used, Bavaria Yachts was not involved in the project.) According to Fischer Panda, after evaluating the Bavaria project, the company decided that the diesel-electric AC system is a niche product that wouldn’t interest their prime market: original equipment builders.

“Although the AC system has some advantages in the improved response of the electric motors … and the quietness of the system, the desired fuel efficiency and weight savings were not evident,” Fischer Panda reported.

Fischer Panda considers the DC system to be more suitable for its North American customers. Although it’s limited in output due to its limited battery voltage of 48 volts, it is still able to power multihulls up to 10 tons.

Currently, much of the movement toward electric drives is taking place in the catamaran world. This makes sense when you consider that a single diesel generator can, in theory, provide all the boat’s electrical needs and also take the place of two diesel-propulsion engines. Taking the lead in the field, Lagoon Catamarans introduced in 2006 the Lagoon 420. Originally offered only as a hybrid, it now is also available in two diesel versions. Corsair Marine is building the Corsair 50 catamaran around the Glacier Bay diesel-electric drive, but the boat’s launch date—formerly set for this summer—has been postponed.

Dick Vermeulen, president of Maine Cat, tried the Glacier Bay system in a prototype power cat, but it failed to meet performance expectations, so production models will have conventional diesels. A number of other cat builders have announced hybrid or diesel-electric projects, but feedback on how they perform is scan’t.

So much for the mainstream—but backwater sailors will go their own way, as they always have. As more vendors and components enter the market, the options for do-it-yourselfers or custom-boat customers become broader and more attractive. However, before going ahead with an installation, make sure it’s appropriate to how you plan to use your boat, and even then be prepared to adapt the way you sail to take best advantage of the system’s characteristics. Here’s a rundown of the various types.

Electric Drive Only

Duffy Electric Boats has for years been building electric launches and lake boats that have the simple capability of puttering around in sheltered waters for a period of time determined by battery capacity and speed maintained. A battery charger powered by shore power charges the batteries overnight. Transferring that approach to a sailboat up to about 25 feet used for daysailing and kept near an electrical outlet shouldn’t be too difficult. It won’t offer the assurance of diesel when trying to get home against current or wind, but a proven 36- or 48-volt system will keep you out of uncharted standards territory.

For a bigger boat, more power, a greater range, or a combination of these requirements, it will be necessary to install a large battery bank and almost certainly will entail going to a higher voltage to keep the amps and the cabling needed to carry them manageable. The boat’s range under power will be limited by the weight of batteries, and while lighter lithium-based technology is on the horizon, for now the standard is lead/acid. The fast charging, but expensive pure lead thin plate (PLTP) Odyssey batteries have attracted particular interest among propulsion enthusiasts.

Electric Drive with Regeneration

Debut of the Electric Leopard

The next level up in complexity is a “reversible” system. When the boat is sailing, the propeller turns the motor, which then becomes a generator. The electricity it makes is used to recharge the batteries. The capability to regenerate extends the boat’s potential range, but the drag on the propeller slows the boat measurably. One hour of regen will not restore the power consumed by one hour of motoring, but if sailing time sufficiently exceeds motoring time, this arrangement offers considerable range.

A regenerating system does have the potential to overcharge the batteries once they become fully charged and the boat continues to sail fast. The solution is, ironically, to give the motor some “throttle,” which reduces the drag on the propeller and consequently the power output. This phenomenon gives rise to a new technique, that of “electro-sailing” in which sails and an electric motor complement each other. At present, the “throttle” must be adjusted by hand, but developers are working on automatic controls. Field trials of existing regen motors such as the Solomon systems suggest that a small regen motor’s ability to match the output of a much higher-rated diesel have been overstated.

Hybrid Electric Drive

A hybrid system adds to the mix an onboard generator, which is used primarily to maintain charge in the batteries, both those for the propulsion motor and for the house services. This arrangement extends the boat’s capability to lie for long periods at anchor, independent of shore power for electricity and without the need to go sailing for the sole purpose of charging the batteries. A hybrid can motor constantly, as long as there is fuel, but it cannot sustain full speed for long periods. This is because the generator is usually rated at a far lower horsepower than that required to drive the boat at full speed.

Diesel-Electric Drive

In a pure diesel-electric, the electric propulsion motor runs only when the generator is running. Storage batteries are not needed for propulsion purposes, and the generator is the source for all onboard electrical power needs. The rationale behind diesel electric lies in the relationship between a diesel engine’s rate of fuel consumption and the load it’s working under. It burns fuel more efficiently when heavily loaded than when lightly loaded. When the diesel engine is disconnected from the propeller, it can be controlled so that it is working in the upper range of its efficiency regardless of how fast the propeller is turning. Nigel Calder’s series of articles in Professional Boatbuilder magazine (www.boatbuilder.com) beginning with the June/July issue delves deeply into the efficiency discussion surrounding these engines. Systems on large vessels are built around multiple generators that switch on or off according to the power demands of the moment. Translating those efficiencies into a smaller boat scenario has proven to be challenging.

Hype vs. Experience

Maine Cat’s Vermeulen, on the company’s website, describes the sea trials he performed in the Maine Cat 45, a power catamaran. He began with a Glacier Bay diesel-electric system with two 25-kW generators, each weighing about 550 pounds.

“With both generators putting out their full power of 25 kW each … our top speed was a disappointing 8.4 knots, and the assumption that electric horsepower was somehow more powerful than conventionally produced horsepower was in serious doubt.”

He replaced the propellers with a pair with less pitch, which allowed the electric motors to reach their full rating of 1,100 rpm, but that only increased the speed to 9.1 knots.

“These are about the same speeds and fuel burns we get on our Maine Cat 41 sailing cat … powered by twin 29-horsepower 3YM30 Yanmar diesels with saildrives and two-bladed, folding propellers.” At the time he installed them, the 25-kW generators were the highest power available from Glacier Bay.

Lagoon’s Nick Harvey

Vermeulen replaced the diesel-electric system with twin 160-horsepower Volvo diesels. At 9.1 knots, they together burned 2.2 gallons per hour, considerably less than the 3 gallons per hour that the Glacier Bay system burned at the same speed. With the twin Volvos maxed out at 3,900 rpm, the boat made 24.5 knots.

Also among the unconvinced is Chris White, well-known designer of ocean-going catamarans. “To date, I’ve not seen any system that makes sense for a cruising boat,” he says, but he might change his mind, “if someone can show me by building one that delivers an advantage in performance, weight, or cost.”

White sees the current bubble of interest in diesel-electric drives as a fad. In the end, he says, you’re getting the horsepower the diesel creates at the crankshaft, which is basically the same whether it’s delivered to the prop via a conventional reduction gearbox or via a generator and an electric motor. Besides, he says, diesel engines and diesel fuel are understood and available anywhere in the world you might take a sailboat. Complex, electronically controlled electric motors are not.

White’s reservations notwithstanding, it’s in the world of catamarans that we’re seeing most of the applications. At first sight, it does seem logical that replacing three diesel engines—two propulsion and one generator—on a fully equipped cruising cat would result in fuel savings. Still, if the generator is big enough to drive the boat at cruising speed (which in a cat is expected to be in the vicinity of 10 knots) and run the air conditioning at the same time, it will be overkill for the times it’s only needed to operate the boat’s services. For this reason, commercial and military diesel-electric systems employ multiple generators that can be switched on and off according to the power demand of the moment.

Corsair Marine hopes that by installing a diesel-electric system in its 50-foot catamaran, it will be able to descend the weight spiral. Where a conventional installation would involve two 75-horsepower saildrives plus a 6-kW genset, it’s fitting a pair of 28-horsepower electric motors, one 25-kW generator, and a 40-amp, 230-volt battery bank. It expects to save about 700 pounds in equipment weight, some of it through the use of high-voltage, low-current systems, which will in turn reduce the rig requirement, thus the structural weight, and so on toward an estimated overall weight savings in the thousands of pounds.

Corsair’s David Renouf estimates that the boat will cruise at 8 knots and be capable of short bursts at 10. He admits that, until the first boat is launched, his information is “based on extrapolation, not proven numbers.” He says that some clients will add a second 25-kW genset to assure longer periods at 10 knots. Currently, the project is running behind schedule, with a launch scheduled before the end of the year.

Cost and Other Benefits

At the present time, there appears to be no reason to install any proprietary electric drive of any description in the expectation of bettering the economics of a standard diesel drive. The motors and their electronic controllers are sophisticated and expensive. A battery bank sufficient to provide a useful motoring range is a big investment in weight, space, and money. When you add a generator and its peripherals, the cost and weight take another upward leap.

Only the simplest system will begin to pay itself off in terms of fuel not burnt, and then only if the boat sees a great deal of use. A diesel-electric system designed to closely dovetail with the way you use the boat may prove to be more efficient over time than a conventional diesel installation, but until enough systems have been installed and used and data from that use compiled and compared, we can’t know that.

So why even consider going electric? Cleanliness and silence of operation are two qualities that make electric propulsion an attractive proposition for a sailboat, but in order to enjoy them, we have to accept the limitations they impose.

A hybrid or a diesel-electric system enables us to have a single fossil-fuel power source for both propulsion and onboard appliances, but whatever fuel we might save as a consequence of motoring more efficiently for a couple of hours will be inconsequential if we run the generator all night to power the air conditioning.

Conclusions

As we go to press, pickings are slim for sailors looking for an electric solution to the diesel problem. Suppliers of components are few, prices are high, and the feedback on long-term reliability is nonexistent. On top of all this is the elephant in the room: the unexplored safety ramifications that accompany high-voltage DC.

However, none of this should deter the dedicated tinkerer who has funds to match his curiosity and who can live within the parameters imposed by electric propulsion.

Practical Sailor encourages our readers to explore the technology, because ultimately, it is the experimenters who bring us the equipment we eventually come to take for granted.

  • Pricing Electric Power for a 30-foot Sailboat
  • Special Report
  • Electric Engines
  • Success in the Real World is a Matter of Perspective

RELATED ARTICLES MORE FROM AUTHOR

I have gotten excited about repowering my Freedom 30 with an electric motor. A fellow Freedom 30 owner completed his refit about 8 months ago and is very happy with the result, although he wishes he had gone with larger Lipo batteries. He chose a motor from electricyacht.com which sells a 10KW package (quietTorque 10) including motor, performance display, throttle and shaft coupler for $6K. Batteries and charger are extra. The motor does does feature a regen capability. Figure a $10K investment. Big bucks for sure but equivalent to a yard installed diesel repower. I would do the install myself.

I am not a cruiser but have done some lengthy passages from San Francisco to Hawaii. Ideal conditions for regen. I expec between regen and a hundred watts of solar, I could have kept the bank topped up the whole way down despite AP loads, etc. The way back? Not so much. Realistically you would need a small generator and a good stock of gas if you wanted to do much motoring, Having said that, one of the boats that sailed down there with me came home with an outboard as his aux power. I think he had ten gallons of gas.

But I am not planning ocean passages in future, I will be sailing the SF Bay and coastal cruising. When I think about eliminating the engine noise, engine maintenance, fuel tank and tank maintenance, diesel hoses, diesel smell, diesel soot, diesel leaks, r=two boxes of hoses and spares. oil changes, coolant changes, transport and disposal of all the waste to the local recycling facility, lugging fuel jugs down to the boat, storing fuel, filling fuel, buying fuel, worrying about spilling fuel. I mean it just goes on and on.

Frankly, I can’t wait. In terms of range, well, I plan to get a hefty battery bank but I also intend to become a better sailor. I’ll slow down and do more sailing. Gee wiz, what a concept. I’ll be more mindful of time and tide, I’ll take advantage of favorable currents and I’ll be ready to anchor and chill when they are not favorable.

Meanwhile, Elon and his competitors are improving battery technology rapidly. Couple of years from now maybe I double range. But, by then, I won’t be worrying about it because I will be a real sailor.

I look forward to reading an update on the state of electric sailboat propulsion 13 years later…

Most of the time we leave the dock, motor for under half a nautical mile to get out of tiny Wilmette harbor and get the sails up, turn off our much abused Yanmar 3GMF, sail around, turn on the engine, lower the sails, and travel another half a nautical mile back to the dock. Almost all at a very low RPM. But, on occasion we motor or motor sail long distances for hours on end, so a battery only system would not work. But how nice it would be if we had electric propulsion for getting in and out of the harbor.

LEAVE A REPLY Cancel reply

Log in to leave a comment

Latest Videos

The Cheap Big Cruising Sailboat - Endeavour 42 video from Practical Sailor

The Cheap Big Cruising Sailboat – Endeavour 42

Marine VHF Radio - What You Need to Know video from Practical Sailor

Marine VHF Radio – What You Need to Know

Pearson 37 & 37-2 - Behind the Curtain video from Practical Sailor

Pearson 37 & 37-2 – Behind the Curtain

How To Test a Boat Engine video from Practical Sailor

How To Test a Boat Engine

Latest sailboat review.

CNC cut structures of Delos Explorer 53. Image courtesy of De Villiers Marine Design.

  • Privacy Policy
  • Do Not Sell My Personal Information
  • Online Account Activation
  • Privacy Manager
  • Yachting World
  • Digital Edition

Yachting World cover

How hybrid sailing yachts finally became a feasible option

Yachting World

  • May 17, 2019

They’ve been a long time coming, but marine hybrid propulsion systems are finally a working reality, as Sam Fortescue reports

hybrid-sailing-systems-oceanvolt-yamila-credit-peter-minder

The Bootswerft Heinrich-built 13m Yamila uses an Oceanvolt electric motor rather than a diesel engine. Photo: Peter Minder

Every sailor is familiar with the wet cough of the diesel engine, and the acrid smell of its exhaust. For some it’s the sign that an adventure is starting, for others it is the reassurance that all is well on board the boat. The traditional engine is perhaps your boat’s most important safety feature, but its days may be numbered.

The electric sailing revolution is coming – and though adoption in the marine sector is proving much slower than in the automotive world ashore, progress is being made.

The market is still relatively small. Clear market leader Torqeedo had sales of €25m last year, most of which was in ferries and compact outboards. It also offers a range of saildrive and pod drive motors for yachts displacing from 2 to 50 tonnes, or roughly 20-60ft LOA.

But sailors have been slow on the uptake, and for one good reason: if you’re planning to cross an ocean or take on tough conditions offshore, you rely on your engine to help you outrun danger or motor through the doldrums – sometimes for days at a time.

hybrid-sailing-systems-oceanvolt-axc

Oceanvolt AXC series is a modular shaft drive system (10kW to 40kW) that will fit in place of a tradition diesel engine

Even with the current crop of advanced lithium-ion boat batteries , the range of an electric system is measured in tens of miles, not hundreds. So a 35ft monohull with 10kWh of lithium battery (four units weighing 96kg in total) would have a range of just 24 nautical miles at 3.8 knots, or less than 16 nautical miles at full throttle.

Taking into account the incredible wastage of combustion engines, which dissipate more energy as heat and noise than they provide in propulsion, diesel is still ten times more energy dense than batteries.

hybrid-sailing-systems-oceanvolt-yamila-credit-tobias-stoerkle

Full-carbon luxury daysailer Yamila uses an Oceanvolt SD8 8kW electric saildrive system. Photo: Tobias Stoerkle

“When you look at bluewater cruisers, of course you will have a diesel,” says Torqeedo’s founder and CEO, Dr Christoph Ballin. “And it’s right that not many coastal sailors opt for pure electric.”

But that doesn’t mean that electric has no interest for cruising sailors – far from it. The more common route for ‘normal’ sailors will be to combine diesel and electric in a hybrid sailing system.

Under this model, the engine is replaced by an electric motor, hooked up to a bank of lithium batteries. This can be charged via hydrogeneration – when the speed under sail turns the propeller and puts charge back into the batteries – and solar or wind. But when extended periods under power are required a standalone DC generator, which can be installed anywhere on board, supplies the electricity.

This is the set-up recommended by Finland’s Oceanvolt, which has focused on the cruising sailing market with a range of shaft and sail drive motors from 3.7kW to 15kW (roughly 10hp to 45hp in diesel engine terms).

“In the case of the round-the-world cruiser, we recommend a hybrid system with a backup genset to support continuous drive when/if needed,” says Oceanvolt CEO Markus Mustelin. “A regenerating prop, which spins while sailing and recharges the batteries (sacrificing 0.2-0.4 of a knot, depending on the boat and conditions) makes it possible to be almost independent of the genset and use it only for backup.”

diesel electric sailboat

Spirit Yachts starts construction on Spirit 111 – one of the largest single-masted wooden yachts ever

Ipswich-based modern classic builders Spirit Yachts has started construction on its largest project to date, a 34m sloop, Spirit 111.…

Torqeedo

Electric propulsion experts Torqeedo wins top award for innovative electric drive

The electric propulsion pioneer Torqeedo won the largest marine equipment prize of the year today (15 November) – for the…

This system has the advantage that the generator is only needed on longer passages, so the boat still manoeuvres silently in and out of ports and anchorages.

And a well-designed, correctly sized generator is much more efficient at turning diesel into electricity than an engine not originally designed for the job. Some sailors opt for an in-line hybrid system, like those offered by Hybrid-Marine, which bolts onto the existing diesel.

These are easier to retrofit, with many of the same characteristics as the full hybrid system, but there’s the disadvantage of still having an engine boxed away somewhere near the middle of the boat.

hybrid-sailing-systems-oceanvolt-servoprop

Electro magnetism

Until now, most business has been done through retrofitting existing yachts. But an increasing number of yacht builders are looking to include electric propulsion as original equipment. The world’s third largest boatbuilder, Hanse Yachts , is perhaps the most advanced – offering its entry-level Hanse 315 with an electric rudder-drive option.

The system takes up less space than the standard diesel, is much quieter and vibration- and emissions-free. But Hanse admits take up has been disappointing.

The technology has found more interest among lake sailors. Innovative young German brand Bente has been fitting Torqeedo motors to its successful 24ft model, originally designed for Germany’s ‘Green Lakes’.

Closer to home, dinghy specialist RS Sailing has decided to fit a retractable electric drive to its new RS21 keelboat. Already christened the ‘invisible gennaker’, the system is based on Torqeedo’s Travel 1003 outboard motor.

Bigger race boats have also been attracted by the lure of low-weight propulsion. Just look at Malizia , an IMOCA 60 being prepared for the 2020 Vendée Globe with a lightweight Torqeedo system.

“Emissions-free round the world under race conditions, while simultaneously producing your own energy, is a thoroughly inspirational concept,” said Malizia skipper Boris Herrmann.

Electric has also been successful at the luxury end of the market, where lithium-ion batteries account for a smaller share of the boat’s overall cost. A 50ft Privilege 5 catamaran and a carbon fibre Gunboat 60 have both been retrofitted with Torqeedo kit, while Oceanvolt appears on a Swan 57 and an all-carbon Agile 42.

hybrid-sailing-systems-moonwave-gunboat-torqeedo

Overview of the Torqeedo Deep Blue propulsion system installed in the Gunboat Moonwave

The Gunboat Moonwave has two 25kW Deep Blue saildrives both capable of regenerating under sail. There is still a generator on board to extend battery range offshore, but “they no longer use the generator – it’s just for emergency,” says Torqeedo’s Ballin.

Spirit Yachts is also designing electric propulsion into its Spirit 111  flagship, due for launch this summer. With four big 40kW lithium batteries aboard and a 100kW motor, the yacht will be able to operate silently for hours, although it also has 100kW of diesel generator capacity.

“The real focus is not the propulsion,” explains Spirit director Nigel Stuart, “but that everything works in harmony, from galley equipment and hot water to heating, air conditioning, hydraulics etc.” The British yard is also building a 65-footer using Oceanvolt hybrid technology and a new 44-footer that is pure electric.

With racing on one hand and high-end cruisers on the other, there is something of a gap in the middle. By Torqeedo’s own admission, the cruising sailor hasn’t been a big focus of the electric revolution, but all that is about to change. “We started a bit late with sailing,” Ballin admits, “but in the next five to eight years it will be addressed big time.”

hybrid-sailing-systems-spirit-111

Fully integrated electric drive system will power the new 111ft Spirit Yachts flagship

What does that really mean? Well, in the first instance, it means system integration. If that doesn’t sound revolutionary, then imagine a set-up on board where solar panels, hydrogenerators, batteries, generators and motors all worked seamlessly together to keep the yacht supplied with ample power around the clock. “That’s what people are willing to pay for: plenty of energy with heating or air-con through the night,” says Ballin.

The future of hybrid sailing

In the near future, Torqeedo is planning a new range-extending DC generator specifically for hybrid sailing boats. Its existing unit is built by WhisperPower and provides 25kW, which is too much power for boats using the pod drive system.

The genset will be designed to operate at optimum revolutions, while clever DC to DC conversion decouples the battery voltage from the charging voltage, for much greater efficiency.

With boats, just as with cars, the breakthrough that will make all the difference is around battery capacity. Until range under electric power can match that of diesel, there will be many sceptics. And that isn’t likely to happen for a decade or more, according to Ballin.

“Theoretically, they’ve tested batteries in labs that are ten times more efficient than lithium,” he explains. “And if that comes through, then gasoline is done. But we are trying to combine long-term vision with short-term mindset.”

In the meantime, the prevalent technology is based on lithium-manganese-cobalt, and a process of steady development is making this 5-8% better each year. For example, BMW has just announced its next generation i3 battery, used by Torqeedo’s Deep Blue system, will be able to hold 40kWh of power – an increase of 33% for the same size, weight and nearly the same cost.

hybrid-sailing-systems-torqeedo-cruise

Torqeedo Cruise 2.0 FP Pod Drive is suitable for small yachts up to 4 tonnes – a folding prop can also be fitted

The other area of development is around the propeller. Most cruising systems use a folding or feathering prop designed for diesel engines. But Torqeedo’s own research shows that the consistently high torque of an electric motor is best utilised by props with variable pitch.

And yet it is Oceanvolt that has addressed this issue specifically for electric motors with its Servo Prop system, which it claims to be 30% more efficient ahead, 100% better astern and 300% more efficient in regeneration mode.

Oceanvolt says that this prop can pump around 500W into the batteries at just 5 knots – the average pace of a 30ft monohull. At 6 knots that rises to around 800W, and at a very manageable 7 knots for a larger ocean cruiser you get 1.2kW.

“A new technology can rarely compete in price with an established one in its initial growth phase,” says Mustelin. “However, we have passed this and today electric systems are offered at a quite competitive price. When you add to that the fact the electric system is almost service free, the total cost of ownership is turning in favour of electric.”

So, you may not hear them approach, but expect to see more and more electric-powered boats on the water as the revolution continues.

A question of torque

A key part of the viability of electric propulsion rests on the notion that a smaller motor can achieve the same work as a bigger diesel. There are two elements to this. First, a diesel engine is not an efficient converter of chemical energy into thrust, creating a lot of heat and noise in the process. Second, the torque characteristics of electric are much better than diesel.

Mustelin says that Oceanvolt’s 10kW motor “easily outperforms” a 30hp diesel. “Typically, maximum boat speed will be somewhat lower (0.5kt-1.0kt) than with a comparable diesel engine, but at the same time the boat will maintain the speed better in heavy seas and headwind due to higher torque. Manoeuvrability is much better in confined marina spaces.”

That’s because combustion engines only reach peak power (and maximum torque) over a small range of speeds. Torque is a measure of turning power – at the propeller in the case of a boat.

A diesel engine develops optimum torque between 1,800-2,000rpm, while electric motors deliver it from 0 to around 2,000rpm. This allows electric motors to use higher efficiency propellers that are slimmer and more steeply pitched.

hybrid-sailing-systems-integrel-generator

Engine-driven: The ‘alternator on steroids’

It has taken years of development and over $10m of funding, but renowned boat systems expert Nigel Calder has helped design an alternator so powerful that it eliminates the need for a generator on board.

Mounted on the engine, on the second alternator position, the Integrel can produce five to ten times more power. Sitting behind the system is at least 10kWh of lead acid batteries (lithium is also an option), and Victron chargers and inverters.

“If you crank the engine it’ll charge the batteries; if you’re running with the engine in neutral, it’ll know it’s in standalone generator mode and switch to that algorithm,” explains Calder. “It will likely be cheaper than a generator installation, and eliminates the issue of the through-hulls, the cooling circuits, the long running hours, the maintenance.”

The system allows you to run all sorts of creature comforts on board that would normally require a generator: from hot water on-demand to coffee makers and freezers. “We honestly believe that this system is going to supplant generators on almost all boats that currently have, or would like to have, a generator,” adds Calder.

With the engine in gear and at low revs, tests show how the Integrel can produce some 2kW of power without increasing fuel consumption or reducing speed – simply utilising the engine’s wasted capacity. This means it will work with the yacht’s existing engine – no need to overspec – and it has already been successfully installed on a new Southerly 480, a Malo 46 and a similar-sized Hallberg-Rassy.

hybrid-sailing-systems-dufour-382-alcyone

Case study: Dufour 382 Alcyone

Built by Dufour in 2016, Alcyone was immediately retrofitted professionally with Oceanvolt’s SD15 saildrive motor, supplied by a 14kWh lithium battery bank. Owners Michael Melling and Diana Kolpak also specced an 8kWh DC generator for range extension. The fit out cost €30,600 for the motor and battery system, plus an additional €13,744 for the generator, and installation costs were around €8,000.

They charter the boat out near Vancouver, for exploring Desolation Sound and the surrounding area where silent, clean propulsion is a selling point. “Nothing spoils the joy of sailing – or a secluded anchorage – more than the noise and smell of diesel engines,” they explained. “Installing an Oceanvolt system in our new boat has freed us from that. It’s the way of the future.”

Charter manager Merion Martin said the conversion has also been popular with charter customers, adding: “The main advantage of the system is that it consistently uses around 40% less fuel than a standard diesel engine over the course of a week’s charter. But understanding the power management system takes a bit of getting used to, and the many components involved in the system can make troubleshooting a challenge.”

If you enjoyed this….

Yachting World is the foremost international magazine for bluewater cruisers and offshore sailors.  Every month we have practical features to help you plan and prepare to realise your sailing dreams. Build your knowledge month by month with a subscription delivered to your door – and at a discount to the cover price.  S ee our latest offers now.

Yachting Monthly

  • Digital edition

Yachting Monthly cover

Electric yacht: What are the options for going electric?

  • Will Bruton
  • July 17, 2020

The options for having an electric yacht or a hybrid-electric yacht are growing in popularity; we outline the current options for those making the switch

An Arcona 380z which has electric propulsion

The Arcona 380Z is a standard production yacht that has been adapted for electric propulsion. Note the increased solar panel surface area with soft panels bonded to the sails. Credit: Jukka Pakainen

A modern electric yacht can come in all shapes and sizes, from the latest high-tech speed boats with recently developed high-performance electric engines, to a traditional tender with an electric outboard on the back. Increasingly yachts are going electric too as electric engines become increasingly capable of propelling boats weighing several tonnes, and with the rigging for sails, at a reasonable speed for an acceptable length of time. 

Since the invention of the marinised engine , there has never been the capacity to store enough fuel to cover significant distances in boats that are smaller than a tanker, with fuel capacity always being the limiting factor. As such the best way to cover long distances on a boat fit for a small number of passengers was, and remains, wind power. 

For all the many green attributes that using the power of wind offers, there is no escaping that for most, fossil fuels still represent some part of sailing – whether that be a diesel engine to motor in light winds, onto and off a mooring , or to generate power for onboard electronic systems. Even a small tender used to go from ship-to-shore is often fitted with an outboard motor.

Recent advances in electric power, however, have started to make electric propulsion a reasonable alternative to fossil fuel power. Range will always be an issue but that has long been true of a traditional diesel engine. Improvements in lithuim-ion battery performance is, and likely will continue to, increase range every year. 

diesel electric sailboat

Spirit Yachts 44e – the ‘e’ stands for electric

Additionally electric power and batteries offer the bonus of being able to be recharged via solar panels , a wind turbine or hydroelectric power – via a hydrogenerator mounted on the stern of a boat sailing. 

At first glance the electric yacht market could appear in its infancy, but like every revolution, the will of the people is driving forward technology that only a few years ago was seen as the stuff of fantasy.

The market has responded to demand, and battery and motor technology has come on leaps and bounds, driven in part by the rapid development of electric cars.

It may not be commonplace yet, but electric yachting is here, even available ‘off the shelf’, so is it time to get onboard?

Spirit 111 launch

The Spirit 111 is a bold hybrid yacht, promising 30 miles motoring under electric power alone. Credit: Ian Roman/Waterline Media

A cutting edge electric yacht

Like Formula One, it’s the cutting edge of electric yachting that trickles down into mainstream production in no time at all.

For Spirit Yachts, a builder defined by a unique blend of traditional and state-of-the-art, electric yachting has been driven by demanding clients that want their yachts to be at the cutting edge.

Spirit Yachts have now produced a number of projects aimed at the all electric luxury yacht market including the Spirit 44e electric yacht and a recent project, the Spirit 111, had all the hallmarks of a superyacht project and the team had to earn their keep delivering to brief.

Managing Director Nigel Stuart explained how it works.

‘The 111 combines several cutting-edge technologies to deliver a something that’s never really been done before. A lithium-ion powered electric drive system can be charged by hydrogenation and also two high-wattage diesel generators.

‘Each generator is 22kw, meaning they can pack a lot of power into the system in a short period of time, they don’t need to run for long to fully recharge.

‘The prop is both a means of drive and power generation, so no separate hydrogenerator is needed. She will be capable of motoring under electric alone for more than 30 miles.

‘When you take on a project that’s electric, it makes you think hard about efficiency so the air conditioning, water heaters and everything in the galley has also been carefully selected to use less power.

‘For her owner there is very little compromise and some major advantages.’

Whilst it’s a long way from the average cruising yacht, the trickle-down effect of projects like the Spirit 111 can’t be underestimated.

A Contessa 32 which has electric propulsion

Calypso , a Contessa 32, was the yard’s first foray into electric-powered yachts. Credit: Jeremy Rogers

Traditional electric yacht

Jeremy Rogers’ yard in Lymington is the birthplace of the iconic Contessa designs and a veritable temple to long keeled , traditional craft.

Less well known is the yard’s interest in electric auxiliary engines, something they have been involved in for more than 10 years.

Their first project, the refit of a Contessa 32 called Calypso, was an experiment by the Rogers family to see what was possible.

‘ Calypso was a test bed in the technology’s infancy,’ explains Kit Rogers of this early electric boat.

‘Inevitably, we didn’t get it all right, but we learned a lot about the dos and don’ts of electric yachting. The end result was a hybrid. The more we did, the more interesting the project became.

‘It’s not just the obvious, silent peaceful propulsion; it’s also the things you take for granted about a cruising boat. For example, no gas, we didn’t need it because we had electric power.

The yard has also worked on an electric folkboat conversion for a foreign customer.

‘The client, first and foremost, loves to sail. He sees the electric as an auxiliary option, along with the rowing and is excited to own a boat that’s quietly different.

‘He’s looking for a more connected experience and an electric boat helps him achieve it. When you’ve been motoring in and out of marinas under chugging diesel engines for years, the electric motor is something of a revelation.

Arcona 380Z has solar panels to help generation in this electric boat

Arcona has installed solar sails on its latest 380Z electric yacht

Off-the-shelf electric yacht

Perhaps the biggest indication of the future of the electric boat is the willingness of production and semi-production builders to pin their flags to the mast and embrace it.

One of the first was Hanse, who developed a version of their 315 utilising a Torquedo electric pod system.

Providing around the same amount of power as a 10 horsepower diesel, a 4.4kWh lithium ion battery pack powers the system.

Arcona, Dufour, Elan and Delphia also have electric boat models and are each taking their own direction on entering the market.

Arcona’s 380Z (the ‘Z’ stands for ‘zero emission’) fully electric boat has solar panel covered sails, capitalising on the large surface area to top up batteries under sail.

In the multihull market, there is even more scope for solar, wind and hydrogenation due to the horizontal surface area available for solar charging.

What are the options for an electric yacht?

Pure electric.

Purely electric systems can be broadly divided into two categories, high and low voltage.

The latter is the simplest option in terms of how it works and requires less specialist knowledge to install.

Kit Rogers installed a 48v Ocean Volt system in his latest project and remarked on the experience.

‘The advantage of the low voltage system is its inherent lack of complexity. Whilst we’ve coupled it with lithium ion battery technology, it can also be wired up to conventional lead acid batteries. There are pros and cons to both. What surprises everyone is the size, it’s a tiny motor and is surrounded by lots of space where the engine would normally sit.’

High voltage systems are more advanced, and utilising lithium-ion technology, their capacity is improving year on year.

For larger yachts this is generally seen as a better option.

A partnership between BMW and Torqueedo has led to the development of the Deep Blue 315v high voltage battery.

Effectively the same unit as found in the BMWi3 electric cars now often seen on the high street, the system produces a lot of power and is being used on the Spirit 111 project as well as catamarans.

Electric hybrid

One big barrier to entry exists for most potential electric yacht buyers – range.

Even the most advanced set-ups are limited to a maximum of a few hours motoring at cruising speed.

‘The electric motors excel at two things in particular,’ explained Kit Rogers.

‘The first is as auxiliary power for getting in and out of marinas. The second is engaged at low power to very efficiently motor-sail in light airs. If you want to do more than that, at present, you need to add a way of packing in the charge into the battery quickly whilst at sea; which means a generator’ .

As with electric cars and as enthusiasm builds for the technology, a hybrid option, pairing a generator with an electric drive system, is already proving popular and is probably the most practical option for those planning to cruise any distance.

Using a large generator, charge can be quickly put into the system when needed.

Once under sail, the yacht’s propeller becomes a hydro generator, meaning that diesel power is not needed day-to-day.

Solar can also be used to add additional charging capacity.

‘When a fully integrated electric hybrid system is incorporated into a cruising yacht from the outset, its possibilities really become clear,’ explains John Arnold, UK manager at Torqeedo.

‘Sailing for days on end with no engine noise is entirely possible. There are other less obvious benefits too. Electric drives have no long rotating shaft, so can be used as pod drives as well, meaning the boat is far more manoeuvrable than even a yacht equipped with bow and stern thrusters.’

Spirit Yachts' 44e electric boat

Spirit Yachts 44e

How much does it cost to convert a yacht to electric power?

The technology exists, but anyone seriously considering going electric will want to crunch the numbers.

In the case of taking out a traditional inboard diesel and replacing it with an electric system, it’s relatively easy to work this out.

However, unless you include an auxiliary generator, you will be limited to battery range alone.

For this reason, we’ve done a like for like comparison for a 35ft yacht engine refit, including the cost of a generator to make the system a practical hybrid.

Unsurprisingly, at the moment, there’s a big difference in cost, but at between three to six times the cost, it is gradually coming into the realms of possibility, and prices should continue to drop as technology develops and evolves.

Ocean Volt SD10 Motor system (including batteries, charger and 6kw generator): £30,825.16

Beta Marine Beta 20hp Marine Diesel: £4,100

If you enjoyed reading this….

A subscription to Yachting Monthly magazine costs around 40% less than the cover price .

Print and digital editions are available through Magazines Direct – where you can also find the latest deals .

YM is packed with information to help you get the most from your time on the water.

  • Take your seamanship to the next level with tips, advice and skills from our experts
  • Impartial in-depth reviews of the latest yachts and equipment
  • Cruising guides to help you reach those dream destinations

Follow us on Facebook , Twitter and Instagram.

  • BOAT OF THE YEAR
  • Newsletters
  • Sailboat Reviews
  • Boating Safety
  • Sails and Rigging
  • Maintenance
  • Sailing Totem
  • Sailor & Galley
  • Living Aboard
  • Destinations
  • Gear & Electronics
  • Charter Resources

Cruising World Logo

The Promises and Pitfalls of an All-Electric Yacht

  • By Tim Murphy
  • Updated: November 8, 2021

Arcona 435Z

This past October, I saw one of the most interesting exhibits in more than 500 new cruising sailboats I’ve reviewed over two decades. It was the Arcona 435Z, built in Sweden and introduced by Graham Balch of Green Yachts in San Francisco. Balch describes his business as “a new brokerage dedicated to the electric revolution on the water,” and it was the “Z” in the boat’s name, which stands for “zero emissions,” that made this boat so interesting. This was the first electric propulsion system—not hybrid but all-electric —I’d ever seen on a cruising sailboat.

Electric propulsion isn’t new. Since 1879, electric motors have propelled boats; a fleet of some four-dozen electric launches transported visitors around the 1893 Colombian Exposition in Chicago. But cruising sailboats are not launches, and the open sea is not a protected canal. When we’re using cruising boats as they’re meant to be used, they seldom end their day plugged into a shore-power outlet. Cruising boats comprise many devices —stove, refrigerator, freezer, windlass, winches, autopilot, radar, lights—whose power typically comes from a tank of fossil fuel. And today’s cruising sailors are accustomed to using diesel auxiliary power to motor through lulls or punch into headwinds and seas.

Starting about 15 years ago, we saw a wave of diesel-electric and hybrid propulsion systems on production and custom cruising boats ( see “Perpetuated Motion,” CW , March 2005 ). Both of those systems ultimately start with an onboard internal-combustion engine. A diesel-electric propulsion system relies on a running genset to directly power the electric motor that turns the propeller. A hybrid system relies on batteries to power the electric motor, plus an internal-combustion genset to recharge the batteries. One of the promises of a hybrid system is the ability to regenerate electrical power. Regeneration means using boatspeed under sail to turn the propeller, whose spinning shaft sends electrons from the electric motor back through an electronic controller to recharge the batteries. In such a system, the boat’s propeller is both an electrical load (when running under power) and a charging source (when sailing in regeneration mode).

The Arcona 435Z was different from both of these systems: It incorporates no onboard fossil-fuel engine at all. Instead, it has a bank of lithium batteries, several solar panels, and a proprietary propulsion leg that looks like a saildrive. “This boat,” Balch said, “has the very first production unit in the world of Oceanvolt’s newest electric propulsion system, called the ServoProp.”

lithium-ion batteries

For our sea trial, Balch was joined by Derek Rupe, CEO of Oceanvolt USA. “If you can sail the boat and you have some solar, you can go anywhere in the world, and you can make all your power underway while you go,” Rupe said. When we spoke in October 2020, he touted three high-profile sailors who were using the Oceanvolt electric propulsion system: Alex Thomson, for his Hugo Boss Open 60 Vendée Globe program; Jimmy Cornell, for his Elcano 500 expedition; and Riley Whitelum and Elayna Carausu, who had been teasing their new boat for months on their popular Sailing La Vagabonde YouTube channel.

The efficiency of Oceanvolt’s ServoProp and the regeneration from it is the promised game-changer in each of these boats. The ServoProp is a leg with a ­feathering propeller that can be set for optimal pitch in three modes: forward, reverse and regeneration.

“You don’t need fuel,” Rupe said. “You don’t need to dock; you can go anywhere you want to go and always have the power for living and propulsion.”

That’s the promise. But are there also pitfalls?

Innovation and Risk

Marine electric propulsion is an emerging technology. Compared with the mature and settled technology of diesel engines and lead-acid batteries, electric-propulsion systems—with their electronic controllers and lithium batteries—are in a stage of development best described as adolescent. Every sailor has his or her own tolerance for technical innovation. For the promise of fewer ­seconds per mile, grand-prix-racing sailors willingly trade a high risk of expensive damage to the sails, rig or the boat’s structure itself; cruising sailors, by contrast, tend to favor yearslong reliability in their equipment as they seek miles per day.

Folks who identify as early adopters take special joy in the first-wave discoveries of a new technology; if they’re clear-eyed about supporting an ongoing experiment, they see themselves as partners with the developers, accepting failures as opportunities for learning. Sailors motivated primarily by changing the trajectory of climate change might be especially willing to modify their behavior to limit their own output of greenhouse gases. Investing in any emerging technology asks you to start with a clear assessment of your own risk tolerance. We’ll return to this theme with one or two real-life examples.

Oceanvolt system

The American Boat and Yacht Council, founded in 1954, sets recommended standards for systems installed on recreational boats. For decades, ABYC has published standards related to installations of diesel and gasoline engines, as well as electrical systems based around lead-acid batteries. By contrast, it was only three years ago that ABYC came out with its first electric-propulsion standard (revised July 2021). And only last year it published its first technical-information report on lithium batteries (a technical-information report is an early step toward a future standard). The takeaway is that if you need help servicing your diesel engine or electrical system built around lead-acid batteries, you can pull into any reasonable-size port and find competent technicians to help you. With electric propulsion and lithium batteries, that pool of skilled talent is significantly scarcer.

ServoProps

To say that a technology is mature simply means that we’ve learned to live with it, warts and all, but that it holds few remaining surprises. Certainly, diesel-propulsion and lead-acid-battery technologies each leave plenty of room for improvement. When a charge of fuel ignites in the combustion ­chamber of a diesel engine, some three-quarters of the energy is lost in heat and the mechanical inefficiencies of converting reciprocating motion to rotation. Lead-acid batteries become damaged if we routinely discharge more than half of their capacity. During charging, they’re slow to take the electrons we could deliver.

Lithium batteries are comparatively full of promise. Their power density is far greater than that of lead-acid batteries, meaning they’re much lighter for a given capacity. They’re capable of being deeply discharged, which means you can use far more of the bank’s capacity, not merely the first half. And they accept a charge much more quickly; compare that to several hours a day running an engine to keep the beers iced down.

Oceanvolt motor controllers

But the pitfalls? Let’s start with ABYC TE-13, Lithium Ion Batteries. Some of its language is bracing. “Lithium ion batteries are unlike lead-acid batteries in two important respects,” the report says. “1) The electrolyte within most lithium ion batteries is flammable. 2) Under certain fault conditions, lithium ion batteries can enter a condition known as thermal runaway, which results in rapid internal heating. Once initiated, it is a self-perpetuating and exothermic reaction that can be difficult to halt.”

Thermal runaway? Difficult to halt? Self-perpetuating?

“Typically, the best approach is to remove heat as fast as possible, which is most effectively done by flooding the battery with water,” TE-13 continues, “although this may have serious consequences for the boat’s electrical systems, machinery, buoyancy, etc.”

If you were following the news in January 2013, you might remember the ­story of Japan Airlines Flight 008. Shortly after landing at Boston’s Logan Airport, a mechanic opened the aft ­electronic equipment bay of the Boeing 787-8 to find smoke and flames billowing from the auxiliary-power unit. The fire extinguisher he used didn’t put out the flames. Eventually Boston firefighters put out the fire with Halotron, but when removing the still-hissing batteries from the plane, one of the ­firefighters was burned through his ­professional protective gear.

Victron Energy Quattro

Samsung Galaxy cellphones, MacBook Pro laptops, powered skateboards—in the past decade, these and other devices have been recalled after their lithium batteries burned up. In that period, several high-end custom boats were declared a total loss following failures from lithium batteries. In March 2021, a 78-foot Norwegian hybrid-powered tour boat, built in 2019 with a 790 kW capacity battery bank, experienced thermal runaway that kept firefighters on watch for several days after the crew safely abandoned the ship.

Yes, experts are learning a lot about how to mitigate the risks around lithium batteries. But we’re still on the learning curve.

ABYC’s TE-13 “System Design” section starts, “All lithium-ion battery ­systems should have a battery ­management system (BMS) installed to prevent damage to the battery and provide for battery shutoff if potentially dangerous conditions exist.” It defines a bank’s “safe operating envelope” according to such parameters as high- and low-voltage limits, charging and discharging temperature limits, and charging and ­discharging current limits.

Graham Balch takes these safety recommendations a step further: “To our knowledge, the BMS has to monitor at the cell level. With most batteries, the BMS monitors at the module level.” The difference? “Let’s say you have 24 cells inside the battery module, and three of them stop working. Well, the other 21 have to work harder to compensate for those three. And that’s where thermal events occur.”

Balch followed the story of the Norwegian tour boat this past spring. He believes that the battery installation in that case didn’t meet waterproofing standards: “The hypothesis is that due to water intrusion, there was reverse polarity in one or more of the cells, which is worse than cells simply not working. It means that they’re actively working against the other cells. But if the BMS is monitoring only at the module level, you wouldn’t know it.”

On the Green Yachts website, Graham lists five battery manufacturers whose BMS regimes monitor at the cell level. “If I were sailing on an electric boat, whether it be commercial or recreational, I would feel comfortable with having batteries from these five companies and no other,” he said.

The broader takeaway for today’s sailors is that lithium batteries bring their own sets of problems and solutions, which are different from those of conventional propulsion and power-supply technologies. A reasonably skilled sailor could be expected to change fuel filters or bleed a diesel engine if it shuts down in rough conditions. With lithium-ion batteries aboard, an operator needs to understand the causes and remedies of thermal runaway, and be ready to respond if the BMS shuts down the boat’s power.

Real-World Electric Cruising Boats

When we met Oceanvolt’s Derek Rupe a year ago, he and his wife had taken their all-electric boat to the Bahamas and back the previous season. Before that, he’d been installing electric-propulsion packages for six years on new Alerion 41s and other refit projects. “My real passion is on the technical side of things—installations, really getting that right. That’s half the picture. The technology is there, but it needs to be installed correctly.”

When talking to Rupe, I immediately encountered my first learning curve. I posed questions about the Oceanvolt system in amps and amp-hours; he responded in watts and kilowatt-hours. This was yet another example of the different mindset sailors of electric boats need to hold. Why? Because most cruising boats have just one or two electrical systems: DC and AC. The AC system might operate at 110 or 220 volts; the DC side might operate at 12 or 24 volts. On your own boat, that voltage is a given. From there we tend to think in terms of amps needed to power a load, and amp-hours of capacity in our battery banks. Going back to basics, the power formula tells us that power (watts) equals electrical potential (volts) times current (amps). If your boat’s electrical system is 12 volts and you know that your windlass is rated at 400 watts, it follows that the windlass is rated to draw 33 amps.

But an all-electric boat might comprise several systems at different voltages. A single battery bank might supply cabin lights at 12 volts DC; winches and windlasses at 24 volts DC; the propulsion motor at 48 volts DC; and an induction stove, microwave and television at 110 volts AC. A DC-to-DC power converter steps the voltage up or down, and an inverter changes DC to AC. Instead of translating through all those systems, the Oceanvolt monitor (and Derek Rupe) simply reports in watts coming in or going out of the bank.

“We keep all our thoughts in watts,” Rupe said. “Watts count in the AC induction. They count in the DC-to-DC converter. They count the solar in. They count the hydrogeneration in. And the ­power-management systems tracks it that way for shore-power in.

“On a boat like this, maybe I have 500 watts coming in the solar panels,” he continued. “So then I can think: ‘Well, my fridge is using 90 watts. My boat has an electric stove. When I cook a big meal, I can see that for every hour we cook, we lose about 10 to 12 minutes of our cruising range.’”

During his Bahamas cruising season, Rupe observed that on days that they were sailing, the combination of solar panels and hydroregeneration supplied all the power he and his wife needed. “When we weren’t sailing,” he said, “we found that we were losing 8 percent each day, in the difference from what the sun gave us to what we were using for the fridge, lights, charging our laptops, and all that stuff.”

Rupe’s solution? “Twice in Eleuthera and once outside Major’s, we went out and sailed laps for a couple of hours because the batteries were below 30 percent of capacity. It was good sailing, and the wind was coming over the shore, so we didn’t have any sea state. We did a couple of hot laps on nice beam reaches, and generated about 700 watts an hour.”

Of the three sailors Rupe touted in October 2020—Alex Thomson, Jimmy Cornell and the Sailing La Vagabonde couple—only Cornell can report back on his all-electric experiences with Oceanvolt. Alex Thomson ended his circumnavigation abruptly last November, just 20 days after the Vendée Globe start, when Hugo Boss collided with an object in the South Atlantic. And at press time in early fall 2021, Riley and Elayna had just recently announced the build of their new Rapido trimaran; keep an eye on their YouTube channel for more about their experiences with the Oceanvolt propulsion system.

Oceanvolt ServoProp

As for Cornell—circumnavigator, World Cruising Routes author, creator of the transoceanic rally, and veteran of some 200,000 ocean miles—he suspended his planned Elcano 500 round-the-world expedition solely because of the Oceanvolt system in his new Outremer catamaran. His Aventura Zero Logs on the Cornell Sailing website, particularly the Electric Shock article posted on December 2, 2020, are essential reading for any sailor interested in sailing an electric boat. “Sailing around the world on an electric boat with zero emissions along the route of the first circumnavigation was such a tempting opportunity to do something meaningful and in tune with our concern for protecting the environment that my family agreed I should do it,” Cornell wrote. “What this passage has shown was that in spite of all our efforts to save energy, we were unable to regenerate sufficient electricity to cover consumption and top up the batteries.”

Cornell’s experience in that article is raw, and his tone in that moment bitterly disappointed. We recommend it as essential reading—not as a final rejection of the electric-boat concept or of Oceanvolt’s system, or even as an endorsement of Cornell’s own decision that the system didn’t work. I suspect that I may have arrived at the same conclusion. Yet given the same boat in the same conditions, one imagines that a new breed of sailor—a Graham Balch or a Derek Rupe—may have responded differently to the constraints imposed by an all-electric boat, as nearly every cruising sailor today habitually responds to the inconvenient constraints of diesel engines and lead-acid batteries.

“If you bring electric winches, electric heads and an induction stove, and then sail into a high-pressure system, you’ll set yourself up for failure,” Balch said. “You have to balance your power inputs and your power outputs.

“Sailing an electric boat is a return to the tradition of sailing that the crutch of a diesel engine has gotten us away from,” he added. “Magellan’s fleet got all the way around the world, and they didn’t have a diesel engine.”

Tim Murphy is a Cruising World editor-at-large and ­longtime Boat of the Year judge.

  • More: Green Wakes , Hands-On Sailor , navigation , print nov 2021 , sailboat review , Sailboat Reviews
  • More Sailboats

Dufour 500GL

For Sale: 2015 Dufour 500 GL

Mishi 88 on the water

New Sailboat Brand: Mishi Yachts

2005 Tayana 48

For Sale: 2005 Tayana 48

Catalina 355

For Sale: 2015 Catalina 355

Mishi 88 on the water

Pro-Grade Sailing Eyewear

Liberty Cruiser rendition

Le Boat and Groupe Beneteau Ink Deal

Rainbow above Saint George's, Grenada

Hurricane Beryl Relief Efforts: How You Can Help

  • Digital Edition
  • Customer Service
  • Privacy Policy
  • Email Newsletters
  • Cruising World
  • Sailing World
  • Salt Water Sportsman
  • Sport Fishing
  • Wakeboarding

Practical Boat Owner

  • Digital edition

Practical Boat Owner cover

Electric sailboat conversion: How my Parker Super Seal went zero-emissions

Ed Phillips

  • Ed Phillips
  • April 5, 2022

Ed Phillips embraces zero-emissions sailing by ditching the diesel and converting his Parker Super Seal into an electric sailboat.

electric-sailboat-conversion-PBO273.Superseal_conversion.supersealconversion17

Electricity is generated by the engine hydrogeneration system when sailing

Aiming to do our bit for the environment, we recently made a number of lifestyle changes – and one of them was converting our Parker Super Seal yacht into an electric sailboat with the use of an ePropulsion electric motor.

It has proved a great transition in so many ways, taking our sailing experience to the next level. At first it felt a scary, big step into the unknown, but in fact proved a relatively straightforward job.

Skylark is our eco Parker Super Seal. She is an accomplished sailing boat, quick, safe, and fun. She is a joy to sail, we regularly achieve over eight knots through the water.

Our cruising range is generally the South Coast between the Solent and the West Country plus the Channel Islands and France. We have aspirations to take her round Britain , we just need to prioritise the time.

Skylark is primarily powered by sail, a main and genoa (140%) and a couple of asymmetric spinnakers.

Article continues below…

electric-inboard-boat-motors-engine-candela

Electric inboard boat motors: 3 yacht owners explain why they made the switch

Just a few years ago there were perhaps half-a-dozen manufacturers making electric outboards. Now there are nearly 40. We covered…

diesel electric sailboat

How to convert a classic motorboat to electric power – Ask the experts

Jon Wallsgrove of Sunbury on Thames asks: “Under restoration is my classic 1946 Thames launch that I’d like to convert…

An electric outboard engine attached to a boat

How to choose the right electric outboard engine

Marine electrician Jamie Marley explains what you should look out for when choosing an electric outboard engine for your type…

Leap of faith

Last winter we took the big decision to convert Skylark from diesel to electric propulsion. So her motor is now a 6kW electric engine, with a 9kWh lithium battery, both made by ePropulsion. Leisure power is supplied by Totalcool 12V lithium batteries and solar panels .

Was it a crazy or brave step? Well, somehow taking a perfectly serviceable engine out and going to an emerging technology seemed quite scary, especially when it involved drilling holes through the bottom of your own boat.

Interestingly, having done it, we now feel the most complex part was taking the old diesel out and that if you can put together a piece of IKEA furniture you can convert a yacht to electric. We will never look back, nor go back to a diesel.

diesel electric sailboat

ePropulsion pod drive 6.0 Evo 1

electric-sailboat-conversion-PBO273.Superseal_conversion.supersealconversion39

The 40 year old Bukh engine before removal

Out with the old

Skylark ’s 40-year-old Bukh 10 engine was still going strong, well bedded-in but was getting expensive to run and maintain. And like all diesels it was not exactly environmentally friendly.

Taking it out wasn’t something to be rushed. Getting the spanners into what is inevitably a very restricted space is an art that takes a while to master.

Persuading the embedded bolts and fixings to loosen is not for the faint hearted. However, a little cussing, the odd cut and much WD40 given time to work seemed to do the job.

In a few hours each day over a couple of days we removed the Bukh. The bits we were worried about, the engine mounts and the drive shaft, turned out to be easier than expected.

The numerous hoses and cables felt a bit ‘Forth Road Bridge’ and seemingly endless, although it was a relatively straightforward task. Just painstaking and on occasions painful.

Having taken everything off the engine the next task was to lift it out. At 140kg this was not a light load. We constructed a frame over the boat using scaffold poles, attached a chain hoist and lifted it gently up and out. It was a dream, all went without a hitch.

Once in the air we had the advantage of having the boat on her trailer, so simply rolled the trailer forward and lowered the engine onto a wheeled pallet. Job done.

With the engine out, there was so much space which got even bigger as we took out the exhaust system. This was actually a genuine ‘five minute job’ and revealed a massive space now used for extra stowage.

Then out came the fuel tank and its attendant tubes and more space gained. But most of all was the joy of saying goodbye to smelly diesel.

Next was to fill the redundant holes in the skin of our ship, the water inlet and outlet, the exhaust outlet. That felt good, the fewer holes in the hull the better!

electric-sailboat-conversion-PBO273.Superseal_conversion.supersealconversion34

Drilling holes through the bottom of your boat is a daunting prospect

Finally, the ‘Big Clean’! The bilges of any boat are always a bit grimy, but years of oil and muck warranted a really good scrub. Traffic film cleaner worked well as a degreaser, then loads of soap and water – a task made so much easier knowing that it was the last time our lovely hull would be subjected to those yesteryear hydrocarbons. Hurrah!

Finally we had a clean slate and perfect foundations for the new installation.

In with the new

This proved to be so straightforward, despite being a little daunting at first. Just like IKEA kits, with a good read of the instructions and marshalling the right tools we set to with an engineering chum (to bolster our confidence!)

First, we spent a good amount of time planning. Second, we glassed a 50cm x 50cm marine ply pad onto the inside of the hull, as belt and braces to spread the load of the engine fitting. Essential, no. Diligent, yes. We felt it ensures our engine will be safe and securely mounted for the coming decades.

The ePropulsion Pod engine is totally external and is simply secured to the hull with three 10mm bolts. All that’s required is a 66mm hole for the cables to feed through.

electric-sailboat-conversion-PBO273.Superseal_conversion.supersealconversion36

Feeding the cabling through the hull from pod to battery

diesel electric sailboat

Shaping the mounting plate to the contour of the hull

diesel electric sailboat

Testing the pod’s position before securing it

Carefully working out how and where to position the engine took a good amount of time. We cut off the last 15cm of the drive shaft cowling, otherwise our propeller would have been too close to the rudder. The cutting was easy (in retrospect). Shaping the spacer to the shape of the hull so the engine would sit vertically did take time.

In retrospect, a sharper cutting edge, and more confidence, would make it much simpler next time. Engine fitted, next we moved on board to install the controller, the charger, the morse and the control panel, all very straightforward.

Our top tip – place the control panel in an easy to see position with the instrument cluster on the forward cockpit. The data is really useful and benefits from easy viewing while at sea.

electric-sailboat-conversion-PBO273.Superseal_conversion.supersealconversion27

Scaffold pole crane and block and tackle were required to lift the new battery aboard

Next came the battery. Our ePropulsion E175 9kWH battery is compact at 52 x 55 x 27cm although quite heavy at 87kg. It fits perfectly on the engine mounts, the load spread by a piece of marine ply, and takes up only half the space of the old engine.

We lifted it on board using the same chain hoist, lowered it gently into the cabin and slid it forward on an old mountain skateboard that I found in the garage. It was so much simpler than we had dared hope.

Finally, connecting it all up was a steady, logical process that needs to be approached methodically, but it’s not difficult. Then, the big switch on. A press of a button and all springs to life.

I still marvel every time I switch it on. Apart from a few lights, there’s little to show or hear! Push the morse forward and silent, powerful thrust results.

Subsequently, we haven’t looked back and will certainly never go back to burning noisy, smelly, dirty, hydrocarbons with all the damage that they do to our fragile environment.

electric-sailboat-conversion-PBO273.Superseal_conversion.supersealconversion40

New battery in situ where the Bukh diesel engine used to be

12V leisure system

Prior to conversion Skylark carried two 12V batteries. These worked well for day sailing, charged by the engine when motoring and trickle charge solar when at rest.

However, with an electric engine there is no alternator so power can get a bit short living aboard after a couple of days out, running instruments, charging phones, lighting etc, without a means of recharging power.

A new solution was required and after much experimentation we have gone for two Totalpower 500 12V lithium leisure batteries, one for the instruments and one for the Totalfreeze fridge. This provides so much power and is easily maintained by the Totalsolar 100 solar panel.

electric-sailboat-conversion-PBO273.Superseal_conversion.supersealconversion41

The control box and charger in place behind the battery with lots of stowage space still available

Lithium batteries have many advantages. You can use all the capacity, as opposed to around 50% with lead acid and they can run 240V appliances as well as 12V. In-battery data screens provide all information live.

Weighing only a few kg – less than a quarter of the weight of lead acid batteries – they are much easier to use and so much more versatile.

Wind generation

Currently, we carry an experimental 48V wind generator. So far it is proving most successful. It is powerful, quiet, and neatly out of the way.

The great benefit is that on a swinging mooring, or at anchor, it means we rarely need to use 240V. We are continuing our research into which brands to select until we have enough data to make informed decisions.

electric-sailboat-conversion-PBO273.Superseal_conversion.superseal_conversion01

Skylark on her mooring in Chichester Harbour

Solar generation

We carry two 12V Totalsolar 100W solar panels This means that we charge the fridge battery in parallel with the leisure batteries. We now have much more 12V capacity than we need – and there is now always ice on tap!

Tenders and paddleboards

To complete our eco set-up our tender has an ePropulsion electric outboard recharged by hydrogeneration and solar. We carry a lightweight ThrustMe engine for runs ashore. Even our Sandbanks Style paddleboards have an electric Vaquita motor, enabling us to always get back to the boat against strong winds and tides.

electric-sailboat-conversion-PBO273.Superseal_conversion.supersealconversion20

Tender has an electric outboard engine too

Electric sailboat experience

Some people fear running out of power, but it’s not proving an issue for us. Electricity is generated by the engine hydrogeneration system when sailing. Input is around 100W per knot when sailing between 4 and 10 knots, at the cost of 0.7 knots of boat speed. In addition, we have the wind generator and on occasion 240V mains power.

Solar panels charge the 12V system when living aboard. Skylark lives on a swinging mooring and on the odd occasion when we want to charge from the mains, usually before a long passage, Chichester Harbour Master and MDL Marinas supply 240V electricity free of charge to electric boats at four points around the Harbour (an eco practice worth encouraging).

In reality we rarely use more than a small proportion of the engine’s potential. Skylark weighs approximately three tonnes loaded. We normally cruise at about 975W at just under four knots, which gives over nine hours of motoring.

electric-sailboat-conversion-PBO273.Superseal_conversion.superseal_conversion04

Silent motoring under engine catches others unawares

A full 6kW gives around eight knots for a much shorter time. We lived aboard for three weeks in the summer, charged just three times (as there was very little wind), and never went below 50% on the battery.

Motor sailing back 29 miles from Southampton Town Quay in under 4 knots of wind, with strong tides both with and against us, we used less than half the battery.

Electric sailboat conversion costs

At the time of conversion we’d retired from the commercial world and had been philanthropists for eight years, gifting our time, so cost management was a critical factor. We spent a good deal of time looking at costs, and the conversion has dramatically reduced our running costs. The logic is as follows:

Bukh annual running costs

I’m a reasonably capable with practical maintenance, however the single cylinder Bukh with its quirky oil seals and gaskets, took me days of work, so it was more practical to work with a professional engineer at a cost of around £300pa for parts and labour, fuel was around £100pa, my morse replacement in its last year was £268, and a new 12V engine starter battery at £120 making a total of £788 spent in 2020.

diesel electric sailboat

Pod drive awaiting its prop. New skeg just forward protects the drive from grounding

Electric sailboat running costs

The total cost of the engine set up, including engine battery controller etc. was £6,800. The chain hoist cost £35, 66mm drill bit £12, fuel £0 (free electricity supplies in Chichester Harbour) so total installation cost £6,847. This engine should last for decades.

Assuming a conservative write-down over 15 years, this equates to £456pa. Economically, going electric has been a great decision. It costs around half the annual cost of before, and is so much less damaging to the planet.

Electric sailboat liveaboards

Our three weeks away were an absolute joy – silent eco sailing and silent motor-sailing in the many days of calm we experienced this summer. Everyone stops us wanting to know how we do it, as we silently cruise past 38-footers!

diesel electric sailboat

Electrical power is generated while sailing

Range anxiety? We are totally over it! We did passages of up to 40 miles in little wind and didn’t use more than 50% of our battery capacity.

We motored from the Solent into Poole Harbour where we spent several days pottering and stand-up paddleboarding, only charging from shore power prior to embarking on our next long passage as due diligence, since the calm weather had limited our wind generation.

We have found that, as with all electric engines, there is a huge amount of torque giving fabulous manoeuvrability and the joy of silent motoring.

At steady speeds she uses very little power, then faster speeds seem to push the effort up on a roughly cube basis. This is great at encouraging us all to be traditional and work with the wind and tides not despite them.

Having an electric engine also totally changes the way one sails, tacking up wind with just 2-300W gives an extra couple of knots and an additional 10° of pointing angle (as the apparent wind shifts), and all this silently. Wow!

Electric sailboat conversion: What we learned

Switching to lithium.

We haven’t found anything to fear and it takes our sailing to the next level. The one thing that took us a while to suss out was how to run our leisure systems as lead acid batteries only last a couple of days with no alternator on hand!

Our learning was to ditch lead acid in favour of lithium, a quarter of the weight and you can use all the battery power, not just 50% of it. We now have so much power that we happily run a TotalCool fridge solar charged.

We will never go back to hydrocarbons. Going electric is such an all-round better experience as well as making a significant difference to the fragile marine environment. Downsides? The only one we’ve found is that folk joke they’re reluctant to race us, as they can’t tell if we’re running the engine!

Looking to switch to an electric outboard engine ? Click here for advice on how to choose the right engine for your type of cruising

Why not subscribe today?

This feature appeared in the April 2022 edition of Practical Boat Owner . For more articles like this, including DIY, money-saving advice, great boat projects, expert tips and ways to improve your boat’s performance, take out a magazine subscription to Britain’s best-selling boating magazine.

Subscribe, or make a gift for someone else, and you’ll always save at least 30% compared to newsstand prices.

See the latest PBO subscription deals on magazinesdirect.com

an image, when javascript is unavailable

672 Wine Club

  • Motorcycles
  • Car of the Month
  • Destinations
  • Men’s Fashion
  • Watch Collector
  • Art & Collectibles
  • Vacation Homes
  • Celebrity Homes
  • New Construction
  • Home Design
  • Electronics
  • Fine Dining
  • Aston Martin
  • Dubai Tourism
  • Gateway Bronco
  • On Location – Olympic Games Paris 2024
  • One&Only
  • The Ritz-Carlton, Kapalua
  • Royal Salute
  • St. Regis Costa Mujeres Resort
  • Sports & Leisure
  • Health & Wellness
  • Best of the Best
  • The Ultimate Gift Guide

This New Electric Sailing Yacht Can Charge Its Own Batteries While Cruising

The 49-footer can generate 3.5 kw of clean, green energy when sailing at speeds greater than 8 knots., rachel cormack.

Digital Editor

Rachel Cormack's Most Recent Stories

  • Singapore Now Has the World’s Most Powerful Passport: Report

This Giant 438-Foot Gigayacht Concept Comes With Its Own Nightclub and Piano Lounge

Hinckley’s newest picnic boat leads with a plush lounge up front.

  • Share This Article

X-Yachts X49E Electric Sailing Yacht

It’s no easy feat to incorporate a next-gen electric propulsion system into an elegant sloop. X- Yachts appears to have pulled it off, though.

The Danish yacht maker, which has spent more than 40 years in the game, just launched a futuristic new sailing yacht that looks to be as stylish as it is sustainable. Christened the X49E , the 49-footer is the very first electric sailboat to be made by the yard.

Related Stories

  • Rivian’s All-Electric Performance SUV Prototype Will Go Into Production, CEO Says
  • This New Kawasaki Prototype Is a Hydrogen-Powered Version of the Legendary Ninja Motorcycle

The 12-ton newcomer is based on the existing X49 model , but eschews the traditional diesel engines in favor of two of Oceanvolt’s 10 kW electric motors. The pods are mounted on each side of the traditional engine compartment, below the aft cabin bunks. The space which used to hold the engines now houses a 28.8 kWh lithium battery bank and an onboard DC generator with a capacity of 11 kW.

X-Yachts X49E Electric Sailing Yacht

The X49E’s solar panels generate energy to power the hotel load.  X-Yachts

Range with pure electric power depends on the boat speed, wind and sea state, but X-Yachts estimates in calm conditions the yacht can travel 22.7 nautical miles at 5 knots. Of course, the diesel generator can be used to run the boat if more range is required.

X49E can also produce up to 3.5 kW when sailing at speeds greater than 8 knots. That means if you sail for roughly eight hours, the batteries will charge from empty to full. The best part is the “full tank” is 100 percent green and free of cost.

To top it off, the X49E is fitted with solar panels that will generate clean energy to power the hotel load. That is the lights, navigation systems, appliances and so on.

X-Yachts X49E Electric Sailing Yacht

The first hull was built for a discerning yachtsman.  X-Yachts

”We didn’t want to be first movers on this area, but preferred to wait until technology and knowledge had matured properly”, Kraen Nielsen, CEO of X-Yachts, said in a statement . “And I’m really happy to say that the time finally is right to present the first X-Yacht with electric propulsion.”

The first hull was built for discerning yachtsman John Haurum, who has a passion for sailing both recreationally and in competition.

“My plans for the X49 are primarily to use it for long-distance cruising, but it has also been specified with performance sailing in mind and I intend to participate in challenges like Around Denmark Race and, eventually, the ARC Cross Atlantic,” Haurum adds.

Looks like you’ll see the X49E tearing it up on the ocean before too long.

Rachel Cormack is a digital editor at Robb Report. She cut her teeth writing for HuffPost, Concrete Playground, and several other online publications in Australia, before moving to New York at the…

Read More On:

  • Electric Yacht

More Marine

Revival Gigayacht

The Lounge on This New 90-Foot Yacht Turns Into a Driving Range at the Touch of a Button

Barton & Gray

These Boat Clubs Make It Easy to Cruise in Yachts, Sportfishers, and More

magazine cover

Meet the Wine Club That Thinks Differently.

Receive editor-curated reds from boutique California producers four times a year.

Give the Gift of Luxury

Latest Galleries in Marine

Ladenstein 88 Yacht

Ladenstein 88 in Photos

Honey Fitz Presidential Yacht

‘Honey Fitz’ in Photos

More from our brands, the inside job: lvmh keeps promoting its own, nba rejects wbd’s attempt to match amazon bid, vicky kaushal, manoj bajpayee, huma qureshi star as zee5 global reports surge in viewership for reality-based content (exclusive), barnes foundation cuts 12 positions, fires curator in newly created role, the best yoga mats for any practice, according to instructors.

Quantcast

Sail Greener

The Pros, Cons, and Future of Electric Yachts and Sailboats

  • By Sail Greener
  • Last updated: April 27, 2022

Sail Greener Sustainable Sailboats and Yachts

Sail Greener is supported by our readers. When you buy through links on our site, we may earn an affiliate commission.

If you sail you likely spend considerable time—and money—cleaning, fixing, and worrying about your diesel or gas engine. When it comes to safety, your backup propulsion is as important as your sails. Can you rely on electric motors for safety? What are the pros and cons of buying an electric sailboat?   

Diesel engines are reliable, but they pollute. Diesel (and gas) engines emit greenhouse gasses and exhaust that includes particulate matter and carcinogens that are a risk to human health. 

Until recently, alternatives to marine diesel engines were limited. Boat owners could carry out their own repower projects or purchase expensive commercial electric motors. Storage capacity was a problem.

Fortunately, the winds are shifting and there are now numerous high quality and economically competitive alternatives to traditional marine engines. In this article we describe the pros and cons of purchasing a new motor or repowering an existing engine. We also describe the market for marine electric propulsion systems and identify leading boat builders, manufacturers, and installers.

Why do we need electric sailboats?

The climate is warming and we continue to pump greenhouse gasses into the atmosphere at a torrid pace. Transport emissions, including road, rail, air and marine transportation, account for nearly a quarter of global CO 2 emissions. 1 https://www.ipcc.ch/report/ar5/wg3/transport/ According to the United Nation’s International Maritime Organization , marine traffic accounts for nearly 3% of the world's CO ­­­ 2 emissions.

While emissions from recreational boaters are less than those from shipping and fishing fleets, they are still considerable. According to an estimate from electricmotoryachts.com , if just 5% of the roughly 13 million registered boats in the United States today repowered with electric, boaters would eliminate an estimated 1 billion pounds of CO 2 emissions. Scaled across boaters around the world, the potential for boaters to meaningfully reduce greenhouse gas emissions is significant.

Exposure to diesel emissions also poses health risks. The smallest particulate matter can contribute to heart attacks, strokes, and lung disease. High exposure to small particulates can impair brain development in children. The International Agency for Research on Cancer , part of the World Health Organization (WHO), classifies diesel engine exhaust as carcinogenic to humans.   

Is there a market for marine electric propulsion?

Global concern over climate is leading to a revolution in how we produce and use renewable energy. This is particularly true in the transportation sector. Sales of electric cars in 2019 increased 40%. In 2020, Tesla motors alone produced almost 500,000 new electric vehicles. This helped to propel Elon Musk to become the world’s wealthiest person. Electric vehicle penetration is still just about 3% but growing dramatically 2 https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/mckinsey-electric-vehicle-index-europe-cushions-a-global-plunge-in-ev-sales# A key factor driving this growth, according to the European Patent Office (EPO) and the International Energy Agency, is innovation in rechargeable lithium-ion batteries and other storage technology. Batteries now account for nearly 90% of all patenting activity in the area of electricity storage. Between 2005 and 2018, patenting activity in batteries and related electricity storage technologies grew four times faster than the average of all technology fields. 3 https://www.iea.org/reports/innovation-in-batteries-and-electricity-storage

It is clear we are reaching a tipping point for electric automobiles and trucks 4 https://www.theguardian.com/environment/2021/jan/22/electric-vehicles-close-to-tipping-point-of-mass-adoption . Is the marine sector also experiencing an electric revolution?

The market for marine electric propulsion systems is lagging what is happening with cars and trucks. However, the potential for growth in this sector is extraordinary. In an article published in Yachting World, Christoph Ballin, CEO of electric motor manufacturer Torqueedo, estimated that only about 1.3% of marine propulsion systems are electric. 5 https://www.yachtingworld.com/features/future-yachting-smart-technology-126136 According to an article published in 2017 by IDTechEx there are over 100 manufacturers of electric boats and ships with an estimate of more than $20 billion in global sales by 2027 for non-military boats. According to the IDTechEx report, recreational boats are the largest—and fastest—growing electric marine market by sales.

The growth potential is enormous considering the size of the recreation economy. In the United States alone, in 2019 outdoor recreation generated US$ 788 billion dollars in output. 6 https://boatingindustry.com/news/2020/11/12/orr-provides-breakdown-of-latest-recreation-economy-data/  An estimated $37 billion of this came from retail sales of boats, engines, accessories and marine services. According to the U.S. Bureau of Economic Analysis (BEA) Outdoor Recreation Satellite Account (ORSA) data, Boating and fishing was the largest conventional activity for the nation as a whole, adding  US$ 23.6 billion to the economy. This was the largest conventional activity in 30 states and the District of Columbia and the second largest activity in 11 states. 7 https://boatingindustry.com/news/2020/11/12/orr-provides-breakdown-of-latest-recreation-economy-data/

Pros and Cons of Electric Motors for Boats

What are the pros and cons of electric motors for sailing?

Pros of electric propulsion

  • Less noise : Electric motors are quieter than diesel engines and nearly vibration free.
  • Lower long-term cost : Motors last a long time and require no fuel. You need batteries and electricity, but the sun and wind can recharge your batteries. You won't need to constantly change engine fluids, filters, or worry about leaks or old tanks.
  • Cleaner and healthier: You won't end up with an oily mess in the engine room and bilge
  • No emissions, no exhaust : Passengers and crew won't be exposed to hazardous fumes and particulates. You won't be spewing out carbon pollution.
  • Instant power: Electric motors can go from zero to full torque instantaneously. Motors do not need to wait for engines to warm up.
  • Weight and storage : Electric propulsion systems are typically less heavy than equivalent diesel systems. OceanPlanetEnergy.com estimates that electric propulsion systems are typically 1/3 the weight of diesel systems. This depends, however, on the weight of your battery bank.
  • Easier maintenance and lower costs: Electric motors are simpler and easier to maintain than diesel generators. OceanPlanetEnergy.com estimates that maintenance costs could be 1/20 of the maintenance costs of a diesel engine in the first decade, even less over time because of electric propulsion systems use far fewer moving parts.
  • Increased reliability and safety : Fewer moving parts translates into fewer breakdown which means which means more safety.
  • Regeneration:   Batteries can be recharged while sailing using, solar, wind, and hydro generation systems.  For example, at sailing speeds over 6 knots Oceanvolt systems are reportedly able to generate significant power for recharging the battery bank.
  • Improved maneuverability: Electric motors have high torque at low RPM, which can make maneuvering in tight spaces like marinas more precise. Electric motors can switch from forward to backward instantaneously.

Cons of electric propulsion

  • Range anxiety: Depending on your battery bank and ability to recharge, you may have less range with an electric motor compared to a diesel engine.
  • Cost: Electric motors can be expensive relative to combustion engines, but costs are plummeting.
  • Lack of familiarity : Sailors familiar with traditional engines may not feel prepared or comfortable to switch to a new form of power.
  • Fires: There can be a small risk of fires from batterie with improper maintenance, but this is also true with internal combustion engines.
  • Charging time: Recharging batteries can take time, but charging times are changing quickly. Tesla V3 Superchargers support peak rates of up to 250kW per car, which translates to about 75 miles of charge in 5 minutes for a Model 3 and charge at rates of up to 1,000 miles per hour 8 https://www.tesla.com/blog/introducing-v3-supercharging . In January 2021 the Israeli company StoreDot announced new “exreme-fast-charging” lithium-ion batteries that could charge a car battery capable of 100 miles of charge in 5 minutes.   It will only be a matter of time before similar speed and capacity is available for boaters.

Industry Leaders

Who are industry leaders in the electric sailboat space?

Electric propulsion companies

Numerous companies produce electric and hybrid propulsion systems for the marine sector. Some of the best known and highest quality brands that provide electric propulsion systems for yachts and sailboats include:

  • Elco Motor : Elco is one of the industry leaders in this field. The company has been around for more than 125 years and now produces a wide range of outboard and inboard electric and hybrid propulsion systems. 
  • OceanVolt : The Finnish company is one of the industry leaders in electric propulsion. The company produces a wide range of electric propulsion systems for monohulls and multihulls. The company has provided cutting-edge electric propulsion systems for Vendée Globe racers, including Alex Thompson’s Hugo Boss and Conrad Colman in 2017, and other racers like French Olympic sailor Damien Seguin.
  • Torqeedo : When Torqeedo was founded in 2004, concepts like “clean tech” and “electromobility” were just a glimmer in Mother Earth’s eye.  One of the pioneers in the modern marine electric propulsion sector, Torqeedo is now one of the market leaders. The company offers outboard and inboard electric motors and hybrid drive systems ranging from 0.5 km to 100 kw in addition to diverse accessories from lithium batteries and solar charging equipment to smartphone apps.
  • Aquamot : This German company produces in-house electric propulsion systems for electric for boats and ships, including motors, batteries, and chargers.
  • Kraeutler Elektromotoren produces a wide range of industrial, ship drive, and boat motors, including drive units for motor and sailing boats.

Electric sailboat manufacturers

Who builds sailboats with electric motors?

Electric propulsion is going mainstream. Dozens of boat builders are building electric-only boats (like SoelYachts.com and Silent-Yachts.com ). Some traditional yacht builders now offer electric propulsion options—and this will likely grow to include all major manufacturers in coming years. Examples of leading yacht manufacturers that include electric propulsion options include:   

  • Arcona Yachts : A leading builder of high quality yachts from Sweden, Arcona is starting to offer high quality zero-emission models, such as the Arcona 415 .
  • Alva Yachts : The German luxury electric yacht brand has designed both mult-hull (non-sail) and monohul (sail) boats. The company’s 25-m Ocean Sail 82 was designed with a hybrid propulsion system and a high capacity battery bank.
  • Baltic Yachts : The Finish producer of luxury yachts and a world leaders in advanced composite yacht building in 2020 selected Oceanvolt for the company’s 68-foot Café Racer manufactured in Finland. The Javier Jaudenes designed boat is just over 20 meters long and 5.5 meters wide. 
  • In 2001 Elan Yachts and Oceanvolt agreed to partner to build a full range of electric-powered yachts ranging from the luxurious GT6 to the the sporty E-Line performance cruisers.
  • Hanse Yachts : The world’s third largest boat builder, Hanse produces the Hanse 315, which includes an electric rudder-drive option.
  • Salona Yachts : A Croatian boatbuilder, Salona builds the Salona 46, a fast, comfortable, and luxurious electric yacht and winner of the Best Green Boat Award at the  Newport International Boat Show . 
  • Sunreef Yachts Eco :   A manufacturer of luxury bespoke multihulls, Sunreef Yachts Eco catamarans are equipped with composite-integrated solar panel systems and lightweight batteries for energy efficiency and environmentally-conscious luxury cruising.
  • Wally : The Dutch yacht builder produces, among its many other models, the 11.35 meter Wallynano MKII, which relies on an OceanVolt electric propulsion system
  • Zen Yachts : A new company established in 2021, Zen builds what it claims is the world's first series production catamaran equipped with a wingsail.

Electric conversion companies

Who can help me convert my sailboat to electric propulsion?

A growing number of companies are dedicated to helping boat builders and individuals convert their yachts. These companies may provide design and support options for advanced battery systems, solar and wind systems, hydrogenation, and overall system design. Some of these companies produce their own electric motors and systems. Leading companies in the field include:

  • OceanPlanet Energy : This company includes some of the giants of the industry. Bruce Schwab was the first American to officially finish the Vendee Globe. Nigel Calder is one of the best known sailing technology writers, including his must-read classic, Boatowner’s Mechanical and Electrical Manual. The company provides energy storage, charging, and monitoring systems; system design and consulting.
  • Electric Yacht : The Minnesota, USA-based company with the eponymous name supports sailors interested in electric propulsion systems. The company helps boaters design and size system and provides motor kits, batteries, chargers, and other components. The company provides examples of conversion projects on its website.
  • e Marine Systems specializes in distributing solar panels, wind generators, electric propulsion drives, inverters, and energy storage systems. The company is located in Fort Lauderdale, Florida, USA.
  • Naval DC produces both “pure” solar and hybrid electric systems ranging from 10 kW to 1 MW. The company provides lithium battery solutions, data and monitoring systems, electric propulsion, and matched propeller systems.

Yacht dealers

A small but growing number of yacht dealers offer new and used electric boats. Green Yacht Sales is an example of a small company that supports the sale of electric yachts and systems from diverse manufacturers.

Global clearinghouses, like YachtWorld and Boat Trader , now provide options to filter searches for electric propulsion sailboats.

Battery technology and companies

Until recently, the amount of energy batteries could store was limited. The cost of buying a new battery bank was prohibitive for most sailors. Today, however, costs are dropping and batteries provide more charge. Range anxiety remains one of the biggest reasons sailors don’t want to swap out polluting diesel engines for quieter and cleaner all-electric systems. However, this concern will soon be obsolete.

There are many high quality marine battery suppliers. Some of the major players in the LiPO market include:

  • ChargeEx Lithium Ion Batteries
  • Dakota Lithium
  • Dragonfly Energy
  • Victron Energy

Successful Examples

Okay, this all sounds good in theory, but is it really possible to throw out your old engine and install a new motor? Here are a few examples of individuals and companies making the switch to electric yachts.

As with many disruptive technologies, it is easier for wealthy individuals to pay more—often much more—for tomorrow’s technology today. That said, these Super Early Adopters are a harbinger of things to come. These individuals may be risk takers but they are also typically really smart and forward-thinking.

Swedish billionaire Niklas Zennstrom is one example of a pioneering “mogul” in the electric yacht world. The founder of Skype and former Time Magazine 100 Most Influential People awardee, in 2018 Zennstrom’s team launched Rán VII. Yachtingworld described the boat as “…so angular it calls to mind Darth Vader or a Stealth bomber.”

Zennstrom shared his views on the future of electric racing in a CNN article in 2018:

“Having gone through the design, build and initial test cycle there is no doubt to me that the future for racing yachts is electric propulsion. It's lighter, less drag, quieter, and most importantly it is environmentally friendly.”

Do-it-yourselfers have been converting electric sailboats for years. The mainstream boating magazines and the media are increasingly showcasing the stories of these sailors retrofitting their boats. A few examples of well-publicized electric yacht conversion stories include:

  • In 2019 Yachting World wrote an article, “How hybrid sailing yachts finally became a feasible option.”
  • Dufour 382: According to an article in Yachting World , the owners Alcyone , a Dufour built in 2016, was retrofitted with an Oceanvolt SD15 saildrive moto r.

The future of electric sailboats

We are facing a climate emergency and the world is mobilizing to reduce emissions of greenhouse gasses. A growing number of boat builders, engine and battery producers, service companies, and individuals are addressing this need by building and retrofitting emission-free sailboats.  We are still in the early stages of this transformation, but change is coming quickly.

Some of the major challenges—and opportunities—for catalyzing this transition in coming years include:

  • Battery storage, charging, and cost: The pace of technology change in the battery sector is dizzying. The amount of charge, the time to charge, and the price per kilowatt of battery storage systems are all improving.  Superchargers are already widespread on land. How long will it take for marine supercharging stations to fill the world’s marinas?
  • Overcoming tradition : Sailors who have used the same technology for decades may hesitate to switch to new technology. Sailors used to heavy yachts and small batteries may look with skepticism on this new technology. Range anxiety is very real in the middle of the ocean. 
  • Cost : As with any new technology, early adopters may have to pay more. The cost of electric propulsion, solar and wind power, and battery storage are dropping quickly. Cost will soon be less of a concern and may become a clear benefit.
  • Retrofits: Many boats still sailing form 1960s and 1970s so 50 years of old boats locked in. But this is also an opportunity for individuals and companies who are willing and able to take this space
  • Manufacturing: making boats expensive and companies may not want to take risks. But new companies are emerging, and the major yacht companies now coming out with electric options (examples).

We are at the dawn of a new age of sailing. With each passing month electric propulsion technology is improving. Motors are getting better, batteries and solar panels are getting cheaper, and electric sailboats are starting to become mainstream.

Finding more information

If you want to learn more about healthy products, check out The Sail Greener Guide to Healthy Sailing . If you want to learn more about who is working to conserve the ocean, see our list of The Best Ocean Conservation Organizations for Sailors .

  • Sail Greener
  • Originally Published: February 26, 2022

Table of Contents

  • climate , diesel engine , electric motor , environment , sailboat , yacht

Like this post? Share with friends and colleagues!

Related articles.

Sailboat and Iceberg Greenland

Climate Change and the Future of Sailing

Earth’s climate and oceans are changing. What does human-induced climate change mean for the future of sailing?

Newport International Boat Show

Green Boat Shows 2022

What major international boat shows promote green events or themes? Check out our calendar of 2022 International Boat Shows to find out!

Sailing Logos

Quiz #1: Ultimate Sailing Logo Quiz

Sail Greener Quiz #1: Ultimate Sailing Logo Quiz

diesel electric sailboat

Electric Yachts for 2022

A growing number of boat builders are joining the electric yacht revolution. What are some of the best eco-friendly sailboats and catamarans for 2022?

diesel electric sailboat

Best Yacht Charter and Boat Share Companies for Sustainable Sailing

Looking for the best yacht charter, boat share, or boat rental company that has eco options? What is the size and growth potential of the green yacht charter market? Check out the latest on eco yacht charters.

Sail Greener sailboat cleaning

The Sail Greener Guide to Toxic Products and Health

Hazardous chemicals and compounds are used to build and maintain sailboats. Learn how you can use non-toxic alternatives to reduce your exposure to toxic substances and risks to your health and the health of the environment.

Sail Greener

The Best Ocean Conservation Organizations for 2022

Are you concerned about the the world’s oceans and want to help? Check out the Sail Greener guide to the world’s best ocean conservations organizations!

Recent News: Boats and Gear

diesel electric sailboat

Orcas attack The Ocean Race

(June 22, 2023; Day 8) – As the final leg of The Ocean Race passed along the western shore of Europe before turning in to

diesel electric sailboat

This Sleek 80-Foot Electric Catamaran Uses Solar Power to Cruise With Infinite Range

The zero-emissions multihull sports an innovative solar skin that continuously generates power at sea….click HERE to read the rest of the article from the ORIGINAL

diesel electric sailboat

Exhibitors and Events at Electric Boat Show Milan 2023

The second Electric Boat Show is taking place at the Idroscalo in Milan this weekend and has a wide range of electric boat exhibitors and

diesel electric sailboat

Historic sailing ship starts first cargo service across Europe

De Tukker, the first ship operated by Dutch sustainable shipping company Ecoclipper, has set sail on the firm’s maiden voyage — 111 years after it

diesel electric sailboat

Francis Joyon “The great way to limit your carbon footprint is to have a very small budget”

On the occasion of Francis Joyon’s stopover in the city of Marseille, we went to meet him to discuss The Arch project and his vision

diesel electric sailboat

An art contest to invent the sailing ship of the future

The association Windship launches a contest for children to imagine the sailing ship of the future. A great opportunity for sailors, artists and inventors to

World tour for model boat inspiring citizen science against environmental pollution

A model sailing boat which represents a key part of a project working to banish single use plastics has embarked on a global tour that

Torqeedo more than doubles warranty to 5 years on Travel electric outboards

Torqeedo announced today that it is introducing a new, industry-leading warranty that more than doubles the existing warranty from two (2) to five (5) years

diesel electric sailboat

Solar panel: how to choose the right one for your boat?

More and more harbors are forbidding the use of electricity when you are not on board, for reasons of economy, ecology and safety. So how

diesel electric sailboat

Life in ocean’s twilight zone ‘could disappear’ amid warming seas

Less food is falling to dimly lit waters, home to specially adapted marine life – but emissions cuts would stem decline Life in the ocean’s

diesel electric sailboat

Oceanvolt Servoprop, now available for large boats

Distributed by e-Nav Systems, the Oceanvolt electric motorization solutions are completed with a complete propulsion system available for sailboats up to 70 feet or 25

diesel electric sailboat

Spirit Yachts goes all-electric for Southampton Boat Show

Yacht designer and builder Spirit Yachts will be displaying two electric drive sailing yachts at this year’s Southampton International Boat Show from 16-25 September 2022.

More News...

An updating news feed on the latest about sustainable sailing. Check out the following topics: - Boats and Gear News - Products and Apparel News - Oceans and Environment News - Charter and Travel News CHECK THE LATEST NEWS...

Looking for book recommendations for maintaining your boat, ocean science and conservation, adventure, and other good reads? BROWSE BOOKS...

Current Weather!

Need to high quality weather data for wind, sun, tide, and more? Check out the latest with our detailed global weather map VIEW CURRENT WEATHER!...

So many videos, so little time. We do the work to put useful green sailing videos in one location. CHECK OUT THE VIDEOS...

More Resources

A curated list of helpful web pages and links to keep you learning about Sailing Greener.

Sign up for FREE email updates

Boats & gear news, products & apparel news, from seahorse earrings to jellyfish brooches: this ocean-inspired high jewelry is swimming in style, bendy solar panels are just as good as regular ones, societal cost of ‘forever chemicals’ about $17.5tn across global economy – report, seajet, a range of antifouling products for a cleaner and more eco-responsible hull, first sustainable and recyclable optimist launched, charter & travel news, hawaii fires: a visual guide to the explosive blaze that razed lahaina, ‘huge’ coral bleaching unfolding across central america prompts fears of global tragedy, biden administration’s gulf of mexico offshore wind sale on the horizon, clean me a river: southeast asia chokes on mekong plastic pollution, florida rocked by home insurance crisis: ‘i may have to sell up and move’, archipelago, a finnish haven of peace and nature in the baltic sea, oceans & environment news, noaa confirms june was earth’s hottest on record, much of greenland’s ice could melt even if world doesn’t get warmer, deep-sea mining spurs fish to vacate mining sites, study finds, protecting marine life also helps people nearby, study says, norway moves to open its waters to deep-sea mining, un adopts historic high seas treaty.

  ⋅  Privacy Policy

  ⋅  Terms and Conditions

  ⋅  Disclaimer

Signup for free updates!

Get notified about new articles

By clicking the button you agree to the  Privacy Policy  and  Terms and Conditions

Subscribe to the Sail Greener Newsletter

Get notified about new articles 

Privacy Overview

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

  • THE PRINCESS PASSPORT
  • Email Newsletter
  • Yacht Walkthroughs
  • Destinations
  • Electronics
  • Boating Safety

Yachting Magazine logo

  • Uncategorized

Diesel Electric Drive

  • By Chuck Husick
  • Updated: October 4, 2007

diesel electric sailboat

Siemens EcoProp

Your next yacht may be powered with a new, but at the same time old and extensively proven, power system-a diesel electric drive. First used in 1903 to propel the triple-screw Russian tanker Vandal on the Volga River and Caspian Sea, diesel electric propulsion is now used in the most modern cruise ships and in thousands of other commercial vessels. Although the idea of powering your yacht with the indirect, two-step diesel electric energy transfer system may appear to be unnecessarily complex, its many advantages can make it a compellingly attractive alternative to a conventional direct mechanical prop-shaft drive.

The benefits of diesel electric drive begin with the design freedom the system affords the yacht’s designer. The engine can be installed wherever appropriate to achieve optimum use of space for the accommodation. Noise and vibration are more easily suppressed than in a conventional direct engine-to-propeller drive. Turning the props with electric motors enhances slow-speed maneuverability by providing unrestricted minimum prop speeds with 100 percent torque available to provide immediate power response at all times. Prop synchronization is automatic and extremely precise. When under way all of the electrical power required by the vessel can be supplied from the diesel electric propulsion system, eliminating the need to run a genset. A diesel electric power system can drive multiple propellers from a single engine or use multiple engines to power one or more props. In a twin-engine/twin-prop system, one engine can power both props when operating within the speed limits imposed in many areas. Electrical power from the vessel’s genset can be used to propel the boat, providing a built-in backup-especially valuable for yachts with single-engine installations. Conversely, the propulsion system can serve as a backup for the yacht’s gensets.

The more than 100-year history of marine diesel electric systems began as a response to the impossibility of quickly reversing the direction of rotation of early direct-to-prop-shaft-coupled diesel engines. With a diesel-powered direct current (DC) generator and a DC motor connected to the prop shaft, the direction of prop rotation could be controlled by a switch. The 100 percent torque, zero-speed capability of the electric motor led to the overwhelming use of diesel electric power for railroad locomotives. Diesel electric drives found a natural application in submarines and many surface ships. Today’s cruise ships, where 70-80 percent of the total onboard power is required for the “hotel” side of the vessel, are diesel electric powered. The power demands can be enormous at times. A trivial example: 1,500,000 watts, equal to more than 1,400 hp, is needed to simultaneously power half of the 1,500-watt hair dryers on a 1,400-stateroom cruise ship.

While the equipment designed to serve the massive needs of cruise ships is unsuitable for any reasonable-sized yacht, numerous land-mobile applications including buses, very large trucks and the cranes used in container ports need power levels similar to those required by a yacht. These land-mobile applications require high overall efficiency, installation flexibility, virtually 100 percent torque at close to zero speed and must meet demanding reliability and durability standards. Fortunately, equipment designed and perfected for these uses is ideal for propelling many types of yachts.

From the helmsman’s standpoint the Siemens diesel electric propulsion system is totally transparent, functioning identically to a conventional power control system, with some welcome and useful advantages. In a twin-prop installation, two conventional-appearing single-lever electronic power controls send commands to the drive control system computer (DICO in Siemens’ terms). Digital messages from the DICO manage the diesel engine’s speed governor and control the current flow from the propulsion converters to the prop-drive motors. The power curve of the engine is programmed into the control computer and used to set engine rpm to the speed that provides the required power with optimum fuel efficiency. It is generally unnecessary for the helmsman to monitor engine rpm. Placing a prop control in neutral allows the prop to freewheel, with no risk of damaging the gearbox, a benefit when the vessel is propelled by the other prop. There are no restrictions on rapid movement of the control from ahead to astern. Moving both controls beyond a preselected prop shaft speed, usually about 400 rpm, will automatically and very precisely synchronize the propellers. In fact, the precision with which the system “knows” the relative rotational position of each prop shaft appears to be sufficient to allow future addition of a prop-phase relationship control. Vibration and noise can be minimized with careful control of the relative position of the blades on one prop with those on the other prop. This technique is common on many multiengine aircraft and is called prop phasing.

In a diesel electric system, the engine can be mounted virtually anywhere in the hull and in whatever orientation is required to achieve optimum use of space. With no need to provide a mechanical power-transfer connection to the hull, the engine mounts can be chosen for optimum vibration isolation. If desired, the engine can be totally enclosed in a sound shield, providing superior sound attenuation without the need to insulate an entire compartment. The incorporation of thrust bearings on the prop shafts ensures precise alignment with the “P” bracket and the prop-drive gearbox, reducing wear on the cutlass bearing and shaft noise. The small size of the prop-drive motor and gearbox also makes it possible to locate the props at the most advantageous position on the hull-a great advantage.

A typical Siemens single-engine twin-prop diesel electric propulsion system is comprised of a permanent magnet three-phase alternator powered by the diesel engine through a speed-increasing gearbox, two short-circuit-proof solid state power inverter modules, two 3-phase permanent magnet prop-drive motors, associated prop-drive gearboxes, a control computer and a conventional-appearing helm control station. System components are surprisingly compact and lightweight. The 145 kW (194 hp) alternator suitable to power a 48-foot trawler yacht is 10 inches square, 22 inches long and weighs 264 pounds. Each of the 114 hp drive motors is similar in size and weight. The 40 x 23 x 7 inch inverter modules are typically bulkhead mounted. The spiral bevel gearboxes used to connect the alternator to the driving engine and the drive motors to the propellers are 98 percent efficient and have a medium duty life expectancy of 25,000 hours. Gearbox power capacities range from 150 to 600 hp, meaning that they can be coupled to multiple alternators or motors to meet the power requirements of larger vessels. All of the system’s power-handling components, alternators, motors, gearboxes and power inverters are cooled with a circulating flow of water/glycol. The system is also continuously monitored, by using temperature sensors built into the alternators, motors, gearboxes and inverters.

Operating efficiency is an important part of the evaluation of any power delivery system. Although the alternators, inverters, motors and gearboxes used in the Siemens system operate efficiently, the total energy loss through the system will typically exceed the losses imposed by a conventional marine gear-coupled drive. However, the efficiency loss is to a large degree offset by the ability of the electronic control to precisely match the engine’s power curve to the vessel’s propellers. In a conventional direct mechanical prop-drive system, the fixed pitch propeller can be matched to the engine and the hull at only one point, maximum engine rpm. At all other engine speeds the engine turns faster than is necessary to produce the required power. The diesel electric drive matches the prop load to the engine, producing a result similar to that achieved with use of a controllable pitch prop. Using one large engine to power two propellers can provide an efficiency advantage compared with use of two engines providing the same total power. Depending on the positioning of the engine, power loss due to exhaust backpressure may be less than what can be achieved in a conventional installation. The option of drawing the vessel’s AC house power from the propulsion system when under way, eliminating the need to run the vessel’s genset, can improve fuel efficiency. Overall, the fuel economy of the diesel electric drive will be close to or as good as what can be achieved using a direct-drive system.

In many installations the cost of a single-engine twin-prop diesel electric power system will be no more than a conventional twin-engine direct-mechanical drive installation. Properly integrated into the design of the vessel, the diesel electric drive’s many attributes will likely make it the preferred propulsion system for a growing number of yachtsmen.

Contact: www.sea.siemens.com/marine/ .

  • More Uncategorized

BoatUS

BoatUS Launches Online Advocacy Tool

electric shock drowning

Dock Danger

Paul Hawran, Cape Horn

A Dream Fulfilled

America's Cup, Oracle Team USA

3 America’s Cup Hashtags to Follow

Prestige 460S Lucky One

For Sale: Prestige Yachts 460S

Winter Custom Yachts 46

Winter Custom Yachts 46 Reviewed

Rybovich 94 III Amigos

For Sale: 94-foot Rybovich Sportfisherman

Bering 92

Bering Yachts Showcases Exploration

Yachting Magazine logo

  • Digital Edition
  • Customer Service
  • Privacy Policy
  • Email Newsletters
  • Cruising World
  • Sailing World
  • Salt Water Sportsman
  • Sport Fishing
  • Wakeboarding
  • <img title="Elan Yachts - Elan E4 - sideview" alt="Elan Yachts - Elan E4" src="https://media.elan-yachts.com/img/YACHTS-Sideview-E4.png"><h3><strong>E4</strong> - 34' 9" ft</h3>
  • <img title="Elan Yachts - Elan E5 - sideview" alt="Elan Yachts - Elan E5" src="https://media.elan-yachts.com/img/YACHTS-Sideview-E5.png"><h3><strong>E5</strong> - 39'3" ft</h3>
  • <img title="Elan Yachts - Elan E6 - sideview" alt="Elan Yachts - Elan E6" src="https://media.elan-yachts.com/img/YACHTS-Sideview-E5.png"><h3><strong>E6</strong> - 50'2" ft</h3>
  • <img title="Elan Yachts - Elan i43 - sideview" alt="Elan Yachts - Elan i43" src="https://media.elan-yachts.com/img/I43-YACHTS-Sideview.png"><h3><strong>IMPRESSION 43</strong> - 43'8" ft</h3>
  • <img title="Elan Yachts - Elan i50.1 - sideview" alt="Elan Yachts - Elan i50.1" src="https://media.elan-yachts.com/img/YACHTS-Sideview-i501.png"><h3><strong>IMPRESSION 50.1</strong> - 49'10" ft</h3>
  • <img title="Elan Yachts - Elan GT5 - sideview" alt="Elan Yachts - Elan GT5" src="https://media.elan-yachts.com/img/YACHTS-Sideview-GT5.png"><h3><strong>GT5</strong> - 43'4' ft</h3>
  • <img title="Elan Yachts - Elan GT6 - sideview" alt="Elan Yachts - Elan GT6" src="https://media.elan-yachts.com/img/YACHTS-Sideview-GT6.png"><h3><strong>GT6</strong> - 49'9" ft</h3>
  • <img title="Elan Yachts - Elan GT6 X - sideview" alt="Elan Yachts - Elan GT6" src="https://media.elan-yachts.com/img/GT6X-YACHTS-Sideview.png"><h3><strong>GT6 X</strong> - 49'8" ft</h3>
  • <img title="Elan Yachts - Elan i40.1 - sideview" alt="Elan Yachts - Elan i40.1" src="https://media.elan-yachts.com/img/YACHTS-Sideview-i401.png"><h3><strong>IMPRESSION 40.1</strong> - 39'4" ft</h3>
  • <img title="Elan Yachts - Elan i45.1 - sideview" alt="Elan Yachts - Elan i45.1" src="https://media.elan-yachts.com/img/YACHTS-Sideview-i451.png"><h3><strong>IMPRESSION 45.1</strong> - 45'5" ft</h3>
  • Elan Yachting Experience
  • Distributors
  • Elan Technology

diesel electric sailboat

What You Need to Know Before Buying an Electric Sailing Yacht or Sailboat

It’s no secret that we’re approaching, or have maybe even passed the moment in history where most buyers are considering buying an electric vehicle. The awkward early adopter phase is long gone, doubters few and far between, and every car manufacturer has at least some EV options, while others focus exclusively on electric and are experiencing massive growth. Mass adoption is here, the prices are falling, and infrastructure and legislature are hurrying to catch up.

All of this has left many people wondering why not bring sailing boats into the electric world? Sailing was never about motoring, never about engine speed – it is about that connection to nature, the serenity of the sea and the challenge. So why not get rid of the “dirty and loud” diesel engine, and simply exchange it for “clean and quiet” electric propulsion? Motor out of the marina or bay in silence, then use the sun, wind and waves to continue your journey.

Well – it turns out that like all good things in life, it’s not that simple, but it can be completely viable if approached correctly, and Elan and Oceanvolt have partnered-up to offer just that.

news-page-Oceanvolt

EARLY ADOPTER PHASE

Unlike the automobile industry, electric-powered yachting is still in the early adopter phase. That is why picking experienced manufacturers is crucial. Elan Yachts, for instance, had built various highly successful projects with Oceanvolt in the past and were part of the pioneering few boatbuilders to take on the challenge. The partnership flourished and matured so that Elan is now working exclusively with Oceanvolt and has extended the offer to their whole range of yachts. But what does being an early adopter mean for the buyer? Mostly that the technology is here, but the price is high. For a well-rounded, high-quality and reliable system, you can expect to pay 20-30% more than a comparable diesel-powered sailing yacht. And since a large part of that cost is for the batteries, do not expect that to change very soon as the demand for Lithium-ion batteries is only increasing.

FOR SERIOUS SAILORS

However, let’s assume that the price is not a problem. You want to be among the first few with a zero-emissions yacht – no noise, no exhaust, no smell and no environmental restrictions. You want to sail without the use of fossil fuels. You want the famous instant power output benefits of electricity in emergency situations, no engine rev settling, no pre-start waiting and low maintenance costs. You want to use the wind and the sun to re-charge. All of these are actual benefits of electric yacht propulsion, but what are the downsides? For committed sailors, there are not many. The operating range of high-end electric propulsion systems like the one from Oceanvolt is from 25 to 70 miles at 5 knots (and more, depending on the battery pack options and power generation), which is more than enough to get you in and out of marinas and bays and still have plenty left over to get you out of a bind. The rest, you sail. And if the yacht is fast, the winds are fair and you achieve 5 knots or more, Oceanvolt’s hydrogeneration kicks in and generates power for recharging the battery bank. Hydrogeneration creates drag of only 0.1 knot at a boat speed of 7.0 knots – so it is barely noticeable. If you can go even faster, the power generation increases exponentially (see GRAPH 1).

GRAPH 1: Elan E4 Power generation prediction

regen

(Source: Oceanvolt)

LIVING ABOARD

Buying an electric-powered yacht is still far from an off-the-shelf experience. You need a trusted team of specialists who will guide you through the process and make sure they create a custom solution according to your needs and a good partnership between the shipyard and the electric propulsion provider is crucial. Why is this so different from a car? A yacht is an independent element on the sea and, unlike a car, it will need to provide its owner with much more than just propulsion. It is imperative therefore to consider everything, from the way the yacht is built to the equipment on board. Since you will spend most of your time sailing, you need a yacht that performs well and is easy to sail. A good, reliable sail plan and rig, like the one on Elan yachts, will give you enough options to substitute the practicality of a diesel engine. Elan’s VAIL technology keeps the weight down, its short-handed sailing approach and comfort-centric design will keep you comfortable even when sailing for longer periods, and the high-end electronics are designed to keep consumption low. That is crucial because you will need to bear in mind cooking, refrigeration, water and cabin heating and entertainment, as well as the availability of ports/marinas with good electrical infrastructure. Of course, there are fossil fuel solutions for all these challenges, and Elan’s and Oceanvolt’s partnership offers a hybrid option with a 48V DC generator, which is very practical, if on the pricier side. Purists, however, will want to go full electric. And for them, more renewable power generation options like photovoltaics, a wind generator or a humbler approach to on-board living will be crucial, especially in colder climates. Bear in mind that experienced shipyards like Elan Yachts will be able to provide a complete solution, including solar panel procurement and installation.

POWER OPTIONS

How powerful are electric motors on sailboats? Well, Oceanvolt offers two different propulsion systems. The Finland-based company has developed a 6, 8, 10 and 15kW SD saildrive, as well as a special 10 and 15kW ServoProp with even better hydrogeneration, thanks to its patented and DAME-awarded software-controlled propeller blades, which change pitch to generate as much power as possible. Depending on the yacht, the entry-level SD saildrive enables 5 knots of cruising speed and a top speed of 7 knots on the 30 ft Elan E3. Bear in mind that power consumption and speed is inverse in relation to power generation – as you go faster, you consume exponentially more power (see GRAPH 2) The good part is that the motor and the saildrive weigh only 42.5 kg, which offsets some of the battery weight. In addition, all of the motors are all closed-circuit liquid-cooled, so there is no annoying spluttering.

GRAPH 2 : Elan E3 RANGE PREDICTION

range

Source: (Oceanvolt)

Want to go electric?

Get in touch with Elan Yachts, and request the configuration of your ideal electric-powered sailboat. Elan is the only yacht manufacturer offering complete electric propulsion solution for the whole range of yachts. Contact our experts, build an energy balance sheet for your needs and your new Elan, taking into account the type of sailing, the environment, living habits and other possible criteria, to create the optimal setup.

E Line Crossover

Elan Yachts - Elan E4

IMPRESSION Cruising

Elan Yachts - Elan i43

IMPRESSION 43 - 43'8"

Elan Yachts - Elan i50.1

IMPRESSION 50.1 - 48'8"

Gt line luxury performance.

Elan Yachts - Elan GT5

GT5 - 40'9"

Elan Yachts - Elan GT6

GT6 X - 49'8"

Get in touch.

diesel electric sailboat

  • Subscribe Now
  • Digital Editions

hero profile

Best hybrid diesel electric boats: The best of both worlds?

Offering silent, emissions-free cruising at displacement speeds and full-throttle performance on the open water, the best hybrid diesel electric boats can do it all…

Electric boats have spread throughout the boating world at a rapid pace over the past few years, but what if you’re not ready to ditch the diesel just yet? Well, that’s where the best hybrid diesel electric boats come in.

Not to be confused with the best hybrid bay boats, these hybrid electric boats combine a traditional diesel engine with an electric motor and so are able to potter along in full electric mode before switching on the diesel engine when you need that extra power to punch a tide.

This not only saves on fuel costs, but is also kinder to the environment and quieter for all those on board. Still not convinced? Check out our round-up of the best hybrid diesel electric boats to see all the big name players investing in this technology…

10 of the best hybrid diesel electric boats

MBY285.news-Azimut-Seadeck-6

The Azimut Seadeck 6 is due to launch at the 2024 Düsseldorf Boat Show

Azimut Seadeck 6

Based on ultra-efficient planing hulls with a 40% carbon fibre content to reduce weight, the Azimut Seadeck range will feature  Volvo’s forthcoming diesel-electric hybrid drivetrains  and roof-mounted solar panels.

This will allow them to run at slow speed on battery power alone but with diesel engines for faster speeds and longer journeys.  Azimut  says this will still enable them to reduce CO2 emissions by as much as 40% over an average year of mixed use.

First to arrive will be the Azimut Seadeck 6, a hardtop/coupé design with an expected LOA of around 60ft and a worldwide debut at the 2024  Düsseldorf Boat Show , followed by the Azimut Seadeck 7, a sportsfly design of approximately 72ft, at the 2024  Cannes Yachting Festival .

Read more about the Azimut Seadeck 6

Article continues below…

Electric boats: When will the boating world be ready to ditch the diesel?

Volvo penta d4 hybrid first look: is this the future of boat propulsion.

bering-145-explorer-yacht

The first Bering 145 was launched in Antalya in 2022 and named M/Y Heeus

With a full displacement steel hull of just over 500 tonnes and an aluminium superstructure, the Bering 145 combines a fuel capacity of 95,600 litres with a parallel hybrid drive system for a range of 12,000nm at a cruising speed of 9 knots.

Under conventional diesel power the range is still a staggering 5,000nm at 8 knots; the maximum speed is 15 knots. The yacht’s  hybrid  system drives the propellers via electric motors that are powered by a bank of batteries that are recharged by variable speed generators.

There’s enough power on tap that this  superyacht  can enter or leave its berth in silence using electric-only mode.

Read more about the Bering 145

bgm75-profile-

The BGM75 features exterior styling from Zuccon International

Bluegame BGM75

Due to be launched at the 2023 Cannes boat show, the all-new Bluegame BGM75 measures 74ft 4in long but sports a relatively narrow beam (for a  powercat ) of 26ft 7in. It claims this will allow it to offer the same volume and performance as a  semi-displacement  90ft monohull while using smaller, more efficient engines.

The slimmer proportions should also deliver a more sea-kindly motion than a typical wide beam motor catamaran, which can have a rather jerky motion in beam seas, as well as a less boxy profile and lower berthing costs.

The BGM75’s ultra-efficient hull has been developed by London-based French naval architect Philippe Briand, who says it will use around 50% less fuel than a comparable volume monohull.

Powered by relatively modest twin Volvo Penta 600hp IPS800s, the semi-displacement hulls should deliver a top speed of around 21 knots with a sustained fast cruise of 18 knots. Bluegame is also claiming it will be one of the first boats fitted with Volvo’s new hybrid diesel electric powertrain, allowing it to cover short distances on battery power alone.

Read more about the Bluegame BGM75

Falcon-Tenders--Miss-Wonderly-fenders

At £1.8m, the Falcon 10m Limousine is not just one of the best hybrid diesel electric boats, but it’s also one of the priciest

Falcon Tenders 10m limousine

Falcon Tenders is a relative newcomer in the yachting industry, and the company, founded by Mark Pascoe (previously of Pascoe International), has taken a novel approach with their superyacht tenders.

Their first two launches were not commissioned by clients but were built on speculation to display the company’s capabilities. And as if that wasn’t brave enough, the first model also boasts a hybrid powertrain.

Powered by a pair of 270hp Hyundai V6 engines supplemented by 20-kilowatt electric motors, this setup allows for  cruising using the combustion engines at speeds of up to 40 knots. At slower speeds of around 8-9 knots, the electric motors seamlessly take over, enabling noiseless and fume-free manoeuvres in marinas or near motherships for up to an hour.

Read more about the Falcon Tenders 10m Limousine

hardy-42-hybrid-yacht-exterior-hero-best-hybrid-diesel-electric-boats

The Hardy 42 was already one of the best British-built trawler boats, now its one of the best hybrid diesel electric boats too…

Hardy 42 Hybrid

The Hardy 42 has been around in previous guises for quite a while now but the combination of a new yard, Falmouth-based Cockwells  (builders of the Duchy range of gentleman’s launches), and a commissioning owner with exceptional foresight has resulted in the best iteration yet.

As the name suggests the 42 Hybrid is a diesel-electric hybrid boat that genuinely seems to offer the best of both worlds. Its single diesel 440hp Yanmar engine can deliver a top speed of 16 knots from its comfortable semi-displacement hull form, and a range of 600nm at 12-14 knots.

This makes for effortless passage-making, even in conditions that might challenge faster planing boats, but once you arrive at your destination you can switch into electric boat mode for near-silent cruising at 4-5 knots for 2-3 hours.

The owner of this boat plans to cruise the waterways of Europe, making it the perfect craft for  crossing the English Channel  or the North Sea under diesel power before letting electric take over once into the more protected inland waters where speed is limited anyway.

Read more about the Hardy 42 Hybrid

jeanneau-nc37-hybrid-review-MBY288.new_tech.517DSCF5331_v002-best-hybrid-diesel-electric-boats

The hybrid prototype looks just like any other Jeanneau NC37

Jeanneau NC37 Hybrid

Volvo Penta’s new parallel hybrid system has already been operating successfully for several thousand hours on a wind farm personnel transfer vessel and on a support boat used by arctic surfers.

The fact that it’s performed so well means it’s now been integrated onto a leisure boat for the first time. Jeanneau’s NC37 is a longstanding and well respected family boat . But when you lift up the engine hatch and peer inside, full of gleeful expectation, it all looks oddly commonplace.

What we have in here is a pair of Volvo Penta D4-320s hooked up to DPI Aquamatic Sterndrives. The engines have been shifted forward 25cm, freeing up the space for a pair of 60kW electric motors.

Read more about the Jeanneau NC37 Hybrid

MBY277.test_Leen72-LEEN-72-lead_5-best-hybrid-diesel-electric-boats

The Leen 72 has the range to cross any ocean in the world non-stop

Neel Trimarans has been championing the bluewater sailing trimaran niche virtually unchallenged for the past dozen years. However, recently it has started making waves in the world of motor boats, too, with an all-new range of power-trimarans under the Leen brand.

The first Leen 72 has a hybrid installation. There is one single diesel engine – a 330hp Cummins QSL 9 – that’s hooked up to a straight shaft and prop and resides in its own palatial engineroom in the middle of the lower deck.

Plus there are independent electric motors, shafts and props in both floats. Essentially the wing motors have three roles – easy manoeuvring in harbour, emissions-free capability (for a limited range) and as back-up propulsion in case of a fouled prop or engine issue.

Read more about the Leen 72

SILENT-62-3deck---open-version4-best-hybrid-diesel-electric-boats

The improved Silent 62 is based on the successful 60 model

Due to launch at the 2023 Cannes Yachting Festival, the Silent 62 takes the proven blueprint of the Silent 60  to create the smallest tri-deck catamaran in the range, with three different layout options for the top deck.

With the largest 2 x 340kW motors and a 286kWh battery pack the Silent 62 can cruise at 6-8 knots pretty much non-stop if there is enough sunshine to feed the 17kWp solar panels.

Silent estimates that the 62 will have a daily cruising range of 100nm on solar power alone. If the weather isn’t playing ball there is always the 150kW diesel generator to fall back on, fed by fuel tanks of up to 1,600 litres.

Read more about the Silent 62

Sunreef-Ultima-55-MBY287.news.Sunreef_Ultima_55_4-best-hybrid-diesel-electric-boats

Diesel electric hybrid power should give the Sunreef Ultima 55 a top speed of 35 knots

Sunreef Ultima 55 Open

Powercat builder Sunreef Yachts is launching an exciting new range of fast, sporty powercats with hybrid propulsion, starting with this Sunreef Ultima 55.

Sunreef is not revealing much detail about the much-vaunted hybrid propulsion package at this stage, save to say that it will be powered by twin 350kW electric motors fed by a combination of a powerful battery bank and diesel generators.

This should deliver a top speed approaching 35 knots and a range of around 180nm at 25 knots. The battery bank can be charged directly from shore power or the onboard generators as well as being constantly topped up by solar panels on the wheelhouse roof.

Read more about the Sunreef Ultima 55 Open

widercat-92-exterior-best-hybrid-diesel-electric-boats

Edgy styling is a deliberate attempt to liven up the usual bland design of powercats

Widercat 92

The new owners of Italian superyacht builder Wider Yachts are relaunching the brand with a fresh focus on hybrid powercats. The first new model, the Widercat 92, is a 242 gross tonne tri-deck model that sneaks in under the 24m load-line limit.

The diesel electric hybrid powertrain comprises twin Danfoss 583kW electric thrusters fed by a combination of twin 390kW variable-speed FPT diesel generators, solar panels on the roof and a lithium-ion battery bank.

In normal mode Widercat 92 owners can expect a cruising speed of 12 knots and a top speed of around 15 knots. In calm seas with the generators running, a range of 1,600nm at eight knots should be possible or 2,400nm at six knots.

The Widercat 92 can also cruise in zero-emissions electric only silent mode for around 27nm at six knots. At anchor the solar panels should also provide sufficient hotel loads for up to 24 hours without firing up the generators or around 12 hours at night from the house batteries alone.

Read more about the Widercat 92

Bluegame BGM75 sea trial: The €6.8m powercat that thinks its a monohull

Greenline 33 used boat report: the pioneering hybrid boat still making waves 15 years on, archipelago 40 first look: new hybrid powercat sold by british yard, latest videos, cormate chase 32 tour: fast, stylish and practical weekender, axopar 29 sea trial: sun top vs cross cabin – which is best, sunseeker ocean 182 – see how this compact superyacht copes in a wet and windy sea trial.

Diesel Electric Propulsion: Is This A Safer, More Efficient Solution For Your Vessel?

  • June 18, 2017
  • Quite Interesting

Although the idea of powering your vessel with the indirect, two-step diesel electric energy transfer system may appear to be unnecessarily complex, its many advantages can make it a compellingly attractive alternative to a conventional direct mechanical prop-shaft drive. When under way all of the electrical power required by the vessel can be supplied from the diesel electric propulsion system, eliminating the need to run a genset.

A diesel electric power system can drive multiple propellers from a single engine or use multiple engines to power one or more propeller. In a twin-engine/twin-prop system, one engine can power both props when operating within the speed limits imposed in many areas. Electrical power from the vessel’s genset can be used to propel the boat, providing a built-in backup-especially valuable for vessels with single-engine installations.

Conversely, the propulsion system can serve as a backup for the gensets. The use of electric propulsion in certain vessel types is well-known. In marine applications, nearly all the energy is produced by diesel engines. Using an electric propulsion system, where the energy transmission is electrical and the propulsion and thruster are variable speed electrically driven, fuel consumption can be reduced significantly for many vessel types with environmental benefits.

Diesel Electric Systems have been in use to propel vessels for more than 100 years. Branobel launched the first diesel-electric ship in 1903, and since that day, diesel electric propulsion systems have evolved and today they can be found in all boat sizes and applications. But how do you know when to utilize diesel electric technology for your vessel? The investment in Diesel Electric vessels have doubled in the past 4 years, while the construction of purely mechanically propelled vessels have slowed down. But what are the reasons for this growth? Some of the benefits of the Diesel Electric systems are:

Effective design: The ability to locate your generators in any part of the vessel independent of where the power will be used;

Smaller Engine Rooms: Possibility to replace a big slow speed engine with multiple smaller generators;

Reduced Noise and Vibration: No need for long drivelines;

Flexibility: Capability to share the power of one unit with multiple devices (main propeller, bow thrusters, hotel load, pumps, etc);

Redundancy: Generators can be reassigned to cover any machine downtime;

Efficiency: Depending on the application the system can provide better fuel efficiency (mainly if there are requirements for long periods of low speed/load)

Fuel consumption savings calculation: The optimum operation point of a diesel engine will typically be around a load of 85 percent of the Max continuous rating (MCR). Moreover, the efficiency level drops quickly as the load becomes lower than 50 percent of MCR. With the help of the electric system, the mechanical propulsion prime mover is replaced by diesel-electric prime movers that will automatically start and stop as load demand varies. In comparison to a conventional vessel with mechanical propulsion, this enhances the efficiency of the energy usage and reduces the fuel consumption by keeping the average loading of each running diesel engine close to its optimum load point.

However, in some vessel applications, the load variations can be large and rapid. It is impossible to make the generators switch on and off every five seconds as would be the case with DP vessels. By using super-capacitors to supply the load variations, and hence let the diesel engines provide the average load, the peak power of the power plant will be reduced, allowing the average loading of the engines to increase to a more optimal point with lower specific fuel oil consumption. The savings in fuel consumption will depend on many parameters such as actual variations in the load, the average load and the number of prime movers.

In many installations the cost of a single-engine twin-prop diesel electric power system will be no more than a conventional twin-engine direct-mechanical drive installation. Properly integrated into the design of the vessel, the diesel electric drive’s many attributes will likely make it the preferred propulsion system for vessel owners and operators now and in the future.

Related Posts

A compass is a device that indicates direction. It is one of the most important…

Ever wondered why the terms “Port” and “Starboard” are used to denote Left and Right…

Two types of propellers are commonly found in merchant vessels: Fixed Pitch Propeller (FPP) and…

  • previous post: Controllable Pitch Propeller
  • next post: Why Is It Called Port And Starboard?

Logo

Please verify you are a human

Access to this page has been denied because we believe you are using automation tools to browse the website.

This may happen as a result of the following:

  • Javascript is disabled or blocked by an extension (ad blockers for example)
  • Your browser does not support cookies

Please make sure that Javascript and cookies are enabled on your browser and that you are not blocking them from loading.

Reference ID: 859ccbb9-4a4e-11ef-a9f6-2b5775ad318a

Powered by PerimeterX , Inc.

diesel electric sailboat

OXE HYBRID 450

Introducing the OXE Hybrid 450, the world’s first diesel-electric hybrid outboard. Technology, available today, to transition demanding users into the future.

  • Performance
  • Sustainability & Efficiency
  • OXE Hybrid 450

DIESEL-ELECTRIC HYBRID OUTBOARD

OXE Marine has a vision that drives everything we do; we want to make life at sea prosperous for people and planet. We are redefining the evolution of the diesel outboard, and are proud to unveil our latest outboard concept, the OXE Hybrid Outboard.

Sign up for our waiting list now.

450 horsepower of pure power. The (r)evolution continues. Our latest concept is a marriage of clean electric power and our robust and efficient OXE300.

The electric motor is strategically located under the cowling, connected to the drive-belt for seamless operation. Not only does this enhance performance, but it also allows the motor to serve as an alternator, providing the ability to charge the batteries while running in diesel mode. This advanced technology sets the OXE Hybrid 450 apart from the competition, offering a superior boating experience.

Harness the power of both worlds

Efficient and clean electricity meets robust and powerful diesel, in a merge previously unheard of in an outboard.

Discover the OXE Hybrid 450 , a new concept model based on OXE Marine's leading diesel outboard technology combined with an electric motor, utilizing readily available technology, presenting unbeatable speed and torque. The OXE Hybrid 450 offers all the benefits of an OXE Diesel outboard along with a fully electric propulsion system – providing full electric drive, increased fuel savings and additional range and power when needed.

Target Specifications 1

Electric Motor

Electric architecture: Axial Flux Motor

Electric motor: 150 hp, 400 volt, 124 Kw, 230Nm

Battery: Configuration Application Dependent

Technical Specifications

Diesel Engine

Engine type: Diesel Engine, L6. Block built by BMW.

Displacement: 3.0 L

Intake: Turbocharged, intercooled.

Torque: 680Nm at 1750 rpm

Power: 300 hp at 4200-4400 rpm

Fuel: Diesel EN 590, ASTM D 975 No.1 No.2. JIS KK2204, F54 & F75, biofuels HVO100 and B7

A concept in development

OXE Marine are developing the next outboard for demanding users. Still in a concept phase , the first prototype of the OXE Hybrid 450 was revealed at Miami Boat Show in 2023. More information on public release to come. 

Hybrid Hero Banner Test 1

1. Targeted figures. Subject to change. 

Configure your OXE outboard

With the OXE Configurator, you can easily select your desired power output, shaft length and other specifications to create the perfect outboard for your specific application.

Find a dealer

Need help finding an OXE dealer near you? Click below.

diesel electric sailboat

Emission-free solar and electric-powered boats to replace diesel vessels in Chilika Lagoon

icon

Chilika Lagoon, Asia’s largest brackish water lake, is set to introduce emission-free solar and electric-powered boats, replacing traditional diesel-powered vessels. The implementation of solar and electric-powered boats with aluminium as one of the core components highlights the importance of a green and emission-free environment.

Chilika Lagoon is home to a diverse range of aquatic and wetland species, including the rare and endangered Irrawaddy dolphin and fishing cat. The introduction of solar and electric-powered boats featuring aluminium and other metals aims to address the growing concerns about emission reduction and the environmental impact of diesel boats, which contribute to air, water, and noise pollution, harming the delicate wetland ecosystem.

As per the reports, on average, producing 1 megawatt (MW) of photovoltaic capacity requires 21 tonnes of aluminium. According to IRENA’s Remap scenario, the anticipated growth in solar capacity is projected to increase global demand for aluminium by an additional 160 million tonnes by 2050.

OREDA plans to invest approximately INR 20 crore

With numerous motorised boats currently used for tourism and fishing, the Orissa High Court had previously instructed the state government to consider replacing diesel-powered boats with solar or battery-operated alternatives to reduce noise and pollution in the lake. The Odisha Renewable Energy Development Agency (OREDA) has issued tenders to pilot this initiative this year.

The tenders cover the introduction of new solar and electric-powered boats and the retrofitting of existing boats with solar technology. The project includes comprehensive maintenance of these boats for two years at various locations around the lake. Initially, OREDA plans to deploy five emission-free tourist boats, each accommodating 20 passengers. The estimated cost for this initiative is around INR 3 crore.

OREDA plans to invest approximately INR 20 crore to retrofit 28 tourist boats belonging to the Odisha Tourism Development Corporation (OTDC) and the Chilika Development Authority (CDA) and an additional 100 fishing boats. According to OREDA Joint Director Soumya Ranjan Panda, a stakeholders meeting has already been held, and tenders are expected to be finalised by August. Panda also mentioned that efforts are underway to launch the zero-emission boat project by the end of this year.

Source: https://www.alcircle.com/news/chilika-lagoon-embraces-green-future-emission-free-solar-electric-powered-boats-to-replace-diesel-vessels-111486

For queries, please contact Michael Jiang at [email protected]

For more information on how to access our research reports, please email [email protected]

time

SMM Events & Webinars

Apac (9th) stainless steel industry conference 2024, apac tin industry conference 2024, 2024 (13th)smm metal industry annual conference.

diesel electric sailboat

Champlain Fleet Club tests out electric boat

The boat is called the X-Shore Eleex 8000. It came all the way from Sweden.

BURLINGTON, Vt. (WCAX) - Members at the Champlain Fleet Club climb aboard, to experience a new kind of boat.

“Oh I think electric is great. Oh that boat looks fantastic, I would definitely give it a try,” said Champlain fleet club Member Matt Bieber.

Matt Bieber has been a member with the Champlain Fleet Club for many years, and he enjoys taking advantage of the boat use on the weekend with his family.

When he heard the fleet club could be going electric, “he thought what a great idea.”

I work for a company that does battery electric generators, cars, everything. So I think boating is kinda the next evolution. Plus you save a lot of time not having to go and pump gas,” said Bieber.

The boat is called the X-Shore Eleex 8000. It came all the way from Sweden.

It’s made from fiberglass and carbon fiber and can be fully charged overnight.

The boat on full charge lasts about five to eight hours. The company X-Shore is hoping to have more of their boats in Vermont over the next few years.

“Burlington just makes a lot of sense for a whole lot of reasons. One is you guys just have incredibly clean energy production. There is a lot of focus on just the environment and being conscientious,” said X-Shore Cri Boratenski

Co-owner of the fleet club Philip Scott says if they decide to take on the Eleex 8000. They hope it can save more money for their members with gas prices being so high.

The fleet club wants to be the first to have an electric boat on Lake champlain.

“Since there is no motor, it’s purely electric. It is very environmentally friendly, and very quiet. We still have some concerns about how often or how quickly we can charge the boat. Because under our model, boats are going out constantly every day. Multiple users are taking the boats out,” explained Scott.

The Champlain fleet club is not sure when they are going to be adding the boat to the rest of the boats they have on the marina. But the owners say they would love to hear from their members about what they think of the idea.

Copyright 2024 WCAX. All rights reserved.

File photo

1 dead after crash in Grand Isle

Surveillance photo

Reward offered for identity of person who left puppy in Vt. dumpster

Two brothers from Maine, ages 16 and 19, were fishing on a nearby boat when they captured the...

Incredible video shows whale crashing onto boat, sending fishermen into water

Mark Edward Sutton Jr., Jasmine Brown and William Stearns.

Essex police investigating assault on officer

Surveillance photos

Suspect in Burlington mugging arrested; police trying to ID others

Darren Martell

Man wanted for questioning in Vt. homicide arrested on unrelated charges

Emergency crews respond to Brewer Parkway in South Burlington Monday evening.

South Burlington woman recounts harrowing attack by man with knife

Dozens of parents in Franklin County have been left without child care after the Vermont...

Parents left scrambling after state revokes license of Richford child care center

Latest news.

File image

Morristown Police investigate suspicious death

The Judge in the trial of a Vermont sheriff accused of assaulting a prisoner has declared a...

Mistrial called in John Grismore case

Franklin County Sheriff John Grismore

Mistrial declared in John Grismore case

Salt Lake City to host 2034 games

Cochran shares thoughts on US Winter Olympic return

The FBI has searched the Long Island home of a former aide to New York Gov. Kathy Hochul. -...

FBI searches home of former aide to New York Gov. Kathy Hochul

diesel electric sailboat

Reward offered for ID of person who left puppy in Vt. dumpster

diesel electric sailboat

Robotic pets providing solace for New York seniors

diesel electric sailboat

Conservation group threatens Vermont over failing to meet greenhouse emission targets

IMAGES

  1. ARCONA 410H HYBRID ELECTRIC SAILBOAT

    diesel electric sailboat

  2. Details on Our 100% ELECTRIC Sailboat

    diesel electric sailboat

  3. Step aboard the Helios, an award-winning yacht with a secret in its

    diesel electric sailboat

  4. 44m Diesel Electric Yacht Concept by Fifth Ocean Yachts and Studio

    diesel electric sailboat

  5. Advanced electric yachts

    diesel electric sailboat

  6. Electric-Powered Sailboat by James Lambden, Propulsion Marine

    diesel electric sailboat

VIDEO

  1. Sailboat diesel to electric conversion #sailing #sailingdiy #electricconversion

  2. 48V Electric Sailboat Motor for Catamaran

  3. Electric Sailboat Motor for Adams 31 B15

  4. Sail into the Future: 30-Foot Electric Boat R30 Takes to a New Level! 🏖️

  5. Here's the sailboat

  6. Southerly 47 conversion to electric

COMMENTS

  1. Oceanvolt

    Oceanvolt offers Hybrid or Electric systems as a power & propulsion option in partnership with many leading monohull boat builders - adding new partners continuously. We also offer repowering solutions for converting away from legacy diesel engines - removing the diesel engine, fuel tanks and exhaust system - cleaning up greasy, smelly engine ...

  2. Electric and Hybrid Propulsion for Sailboats

    288. Vermeulen replaced the diesel-electric system with twin 160-horsepower Volvo diesels. At 9.1 knots, they together burned 2.2 gallons per hour, considerably less than the 3 gallons per hour that the Glacier Bay system burned at the same speed. With the twin Volvos maxed out at 3,900 rpm, the boat made 24.5 knots.

  3. How hybrid sailing yachts finally became a feasible option

    Torque is a measure of turning power - at the propeller in the case of a boat. A diesel engine develops optimum torque between 1,800-2,000rpm, while electric motors deliver it from 0 to around 2 ...

  4. An Innovative Parallel Hybrid Diesel Electric Propulsion System

    EcoDrive is a robust and redundant hybrid electric/diesel propulsion system designed to deliver a multitude of benefits. Originally conceived in conjunction with the HH44, the Parallel Hybrid EcoDrive is a ground breaking industry advancement that we're proud to now offer on all HH Catamaran models. How long can the boat run in Electric Mode?

  5. Electric yacht: What are the options for going electric?

    The Arcona 380Z is a standard production yacht that has been adapted for electric propulsion. Note the increased solar panel surface area with soft panels bonded to the sails. Credit: Jukka Pakainen. A modern electric yacht can come in all shapes and sizes, from the latest high-tech speed boats with recently developed high-performance electric ...

  6. Electric Sailboat Motor: Range, Cost, Best Kits for Conversion

    With the Spirit 1.0 Evo electric sailboat motor, you can go 5.5 mph (8.8 kph) at top speed on the 21 ft RS21 sailing boat, or troll for 20 hours continuously at 2.2 mph (3.5 kph) according to our test. This electric sailboat motor with regeneration allows you to recover energy from the prop while under sail.

  7. The Promises and Pitfalls of an All-Electric Yacht

    A diesel-electric propulsion system relies on a running genset to directly power the electric motor that turns the propeller. A hybrid system relies on batteries to power the electric motor, plus an internal-combustion genset to recharge the batteries. One of the promises of a hybrid system is the ability to regenerate electrical power.

  8. Electric sailboat conversion: How my Parker Super Seal went zero-emissions

    Ed Phillips. April 5, 2022. 0 shares. Ed Phillips embraces zero-emissions sailing by ditching the diesel and converting his Parker Super Seal into an electric sailboat. Electricity is generated by the engine hydrogeneration system when sailing. TAGS: Top stories.

  9. The New X49E Electric Sailing Yacht Can Charge Its Own Batteries

    Of course, the diesel generator can be used to run the boat if more range is required. X49E can also produce up to 3.5 kW when sailing at speeds greater than 8 knots. That means if you sail for ...

  10. Volvo Penta D4 Hybrid first look: Is this the future of boat ...

    Volvo Penta has revealed a fascinating insight into its greener future with the launch of its first diesel electric hybrid leisure boat engine. Although still a prototype, it is based on a standard 320hp D4 engine and DPI sterndrive with an electric motor/generator added to the driveline. Speaking exclusively to MBY, sales project manager ...

  11. Best electric boats: A-Z of the top all-electric models

    The current range comprises six models from 20ft to 32ft, however only the models up to 25ft are available as electric boats. The top-of-the-range electric model, the Boesch 750 Portofino Deluxe, has twin 50kW Piktronik motors giving a top speed of 21 knots and a range of 14nm. Boesch 750 Portofino Deluxe specification.

  12. The Pros, Cons, and Future of Electric Yachts and Sailboats

    Pros and Cons of Electric Motors for Boats. What are the pros and cons of electric motors for sailing? Pros of electric propulsion. Less noise: Electric motors are quieter than diesel engines and nearly vibration free. Lower long-term cost: Motors last a long time and require no fuel. You need batteries and electricity, but the sun and wind can ...

  13. Diesel Electric Drive

    A diesel electric power system can drive multiple propellers from a single engine or use multiple engines to power one or more props. In a twin-engine/twin-prop system, one engine can power both props when operating within the speed limits imposed in many areas. Electrical power from the vessel's genset can be used to propel the boat ...

  14. What You Need to Know Before Buying an Electric Sailing Yacht or Sailboat

    Hydrogeneration creates drag of only 0.1 knot at a boat speed of 7.0 knots - so it is barely noticeable. If you can go even faster, the power generation increases exponentially (see GRAPH 1). GRAPH 1: Elan E4 Power generation prediction. (Source: Oceanvolt) LIVING ABOARD. Buying an electric-powered yacht is still far from an off-the-shelf ...

  15. Powerflow Marine

    At Powerflow Marine we know how much time it takes to maintain a boat. That's why we've developed propulsion systems that are reliable and efficient alternatives to diesel or gas engines. We can assist during your conversion planning with video consultations and wiring diagram creation. We have the ability to add on Victron Energy equipment ...

  16. Best hybrid diesel electric boats: The best of both worlds?

    As the name suggests the 42 Hybrid is a diesel-electric hybrid boat that genuinely seems to offer the best of both worlds. Its single diesel 440hp Yanmar engine can deliver a top speed of 16 knots from its comfortable semi-displacement hull form, and a range of 600nm at 12-14 knots. This makes for effortless passage-making, even in conditions ...

  17. Diesel Electric Propulsion: Is This A Safer, More Efficient Solution

    Diesel Electric Systems have been in use to propel vessels for more than 100 years. Branobel launched the first diesel-electric ship in 1903, and since that day, diesel electric propulsion systems have evolved and today they can be found in all boat sizes and applications.

  18. Electric and Hybrid Propulsion Systems for your Boat

    The most successful electric propulsion retrofits have happened on inboard boats, with drop-in electric motors that directly replace your old, dead gas or diesel engine. Remove your old Atomic 4 or diesel, clean out the toxic leftovers, remove the old fuel tanks, adapt the engine mounts, and install the electric drive using your existing prop ...

  19. OXE Hybrid 450

    The OXE Hybrid 450 offers all the benefits of an OXE Diesel outboard along with a fully electric propulsion system - providing full electric drive, increased fuel savings and additional range and power when needed. Target Specifications 1. Electric Motor. ... the first prototype of the OXE Hybrid 450 was revealed at Miami Boat Show in 2023 ...

  20. We Try Out Mercury Marine's EVs of the Seas

    The Fliteboard hydrofoil and Avator outboard boats demonstrate the possibilities and pitfalls when the fuel dock is replaced with power outlets. By Ezra Dyer Published: Jul 20, 2024 Save Article

  21. genesee belle riverboat

    A variety of cruises are offered aboard the Genesee Belle Paddlewheel riverboat throughout the summer. Reservations are required for all meal cruises. Lunch cruise tickets must be purchased in advance. Reservations for the lunch cruise are accepted until the preceding Wednesday (based on availability). Specialty cruise tickets may be purchased in advance or on the boat based on availability....

  22. Emission-free solar and electric-powered boats to replace diesel

    The tenders cover the introduction of new solar and electric-powered boats and the retrofitting of existing boats with solar technology. The project includes comprehensive maintenance of these boats for two years at various locations around the lake. Initially, OREDA plans to deploy five emission-free tourist boats, each accommodating 20 ...

  23. Champlain Fleet Club tests out electric boat

    The boat on full charge lasts about five to eight hours. The company X-Shore is hoping to have more of their boats in Vermont over the next few years. "Burlington just makes a lot of sense for a ...

  24. Flux Marine unveils electric center console boat with a Scout hull

    The result is a 100% electric day boat with room for nine passengers designed for cruising and coastal fishing at sea. The Scout 215 XSF offers a top power output of 150 hp (112 kW) and 100 hp (72 ...

  25. Elektrostal

    Elektrostal is linked by Elektrichka suburban electric trains to Moscow's Kursky Rail Terminal with a travel time of 1 hour and 20 minutes. Long distance buses link Elektrostal to Noginsk, Moscow and other nearby towns. Local public transport includes buses. Sports

  26. Electric Boat's Hiring Blitz Boosts Submarine Production

    Electric Boat is Still Hiring. The submarine maker has removed the proverbial "now hiring" sign and instead is seeking to hire an additional 2,500. It is looking to fill positions in metalwork, electronics, plumbing, and other manufacturing skills trades. Electric Boat has also launched a new initiative across Connecticut, expanding beyond ...

  27. The flag of Elektrostal, Moscow Oblast, Russia which I bought there

    The Home for all things "Iron Horse". Steam, Diesel, Electric, Pneumatic, Hydraulic. It doesn't matter, let them be seen! Post your Pics, Videos, Stories, experiences, etc. Keep it interesting, topical, NON trolling, and everything will be great. Alaska Railroad to Zambian Railroads, we want to see them all.

  28. Flag of Elektrostal, Moscow Oblast, Russia : r/vexillology

    601K subscribers in the vexillology community. A subreddit for those who enjoy learning about flags, their place in society past and present, and…